Novel Targets of Current Analgesic Drug Development



The development of new pharmaceutical agents for the treatment of pain seems at first like an ideal target for pharmaceutical companies. There is an enormous unmet need with a vast potential market. For many years, opioids and NSAIDs have remained the mainstay treatments in chronic pain, and while the advent of antiepileptic drugs and antidepressant medications into the indication arena for chronic and neuropathic pain has been helpful, it is far from adequate to meet the demands for controlling both acute and chronic pain. Hence, the pursuit of new novel medications for pain seems a rational action, but further insight shows how difficult the task truly is, not to mention the financial risks of such innovation.


Neuropathic Pain Transient Receptor Potential Vanilloid Interstitial Cystitis Fatty Acid Amide Hydrolase Transient Receptor Potential Ankyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Melnikova I. Pain market. Nat Rev Drug Discov. 2010;9:589–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Dworkin R, Turk D, Katz N, Rowbotham M, Peirce-Sandner S, Cerny I, Clingman C, Eloff B, Farrar J, Kamp C, McDermott M, Rappaport B, Sanhai W. Evidence-based clinical trial design for chronic pain pharmacotherapy: a blueprint for ACTION. Pain. 2011;152:S107–15.PubMedCrossRefGoogle Scholar
  3. 3.
    McQue K. Newron’s ralfinamide fails for Katie McQue neuropathic pain. SCRIP World Pharmaceutical News. 7 May 2010.
  4. 4.
    Schmidt W. 6th annual pain therapeutics summit. Oct 2013.
  5. 5. Identifier: NCT01693692, Sponsor Theravance, first received Sept 20, 2012.
  6. 6.
    PRNewsire. KemPharm, Inc. Receives notice of allowance for novel pain drug candidate, KP201. 3 April 2013.
  7. 7.
    Campbell CM, Kipnes MS, Stouch BC, Brady KL, Kelly M, Schmidt WK, Petersen KL, Rowbotham MC, Campbell JN. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy. Pain. 2012;153(9):1815–23. doi: 10.1016/j.pain.2012.04.014. Epub 2012 Jun 8.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger P, Egger M, Trelle S, Juni P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086. doi: 10.1136/bmj.c7086.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Talkington M. FDA advisory panel gives the green light to restart NGF antibody trials. Pain Research Forum. 13 March 2012.
  10. 10.
    Fowler PD. Aspirin, paracetamol and non-steroidal anti-inflammatory drugs. A comparative review of side effects. Med Toxicol Adverse Drug Exp. 1987;2:338–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Kraft B. Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology. 2012;89:237–46.PubMedCrossRefGoogle Scholar
  12. 12.
    Li JX, Zhang Y. Emerging drug targets for pain treatment. Eur J Pharmacol. 2012;681:1–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Lichtman AH, Martin BR. Spinal and supraspinal components of cannabinoid-induced antinociception. J Pharmacol Ther. 1991;258:517–23.Google Scholar
  14. 14.
    Richardson JD, Aanonsen L, Hargreaves KM. Antihyperalgesic effects of spinal cannabinoids. Eur J Pharmacol. 1998;345:145–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu C, Walker JM. Effects of a cannabinoid agonist on spinal nociceptive neurons in a rodent model of neuropathic pain. J Neurophysiol. 2006;96:2984–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaggar SI, Hasnie FS, Sellaturay S, Rice AS. The anti-hyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain. 1998;76:189–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Valenzano KJ, Tafesse L, Lee G, Harrison JE, Boulet JM, Gottshall SL, Mark L, Pearson MS, Miller W, Shan S, Rabadi L, Rotshteyn Y, Chaffer SM, Turchin PI, Elsemore DA, Toth M, Koetzner L, Whiteside GT. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology. 2005;48:658–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Kraft B, Frickey NA, Kaufmann RM, Reif M, Frey R, Gustorff B, Kress HG. Lack of analgesia by oral standardized cannabis extract on acute inflammatory pain and hyperalgesia in volunteers. Anesthesiology. 2008;109:101–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Buggy DJ, Toogood L, Maric S, Sharpe P, Lambert DG, Rowbotham DJ. Lack of analgesic efficacy of oral delta-9-tetrahydrocannabinol in postoperative pain. Pain. 2003;106:169–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Holdcroft A, Maze M, Dore C, Tebbs S, Thompson S. A multicenter dose-escalation study of the analgesic and adverse effects of an oral cannabis extract (Cannador) for postoperative pain management. Anesthesiology. 2006;104:1040–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Borgelt L, Franson K, Nussbaum A, Wang G. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy. 2013;33:195–209.PubMedCrossRefGoogle Scholar
  22. 22.
    Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Phil Trans R Soc B. 2012;367:3353–63.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol. 2010;160:467–79.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Groblewski T, et al. Pre-clinical pharmacological properties of novel peripherally-acting CB1-CB2 agonists. In: 20th annual symposium on the cannabinoids. Research Triangle Park: Int. Cannabinoid Research Society; 2010, p. 37.Google Scholar
  25. 25.
    Kalliomäki J, Annas P, Huizar K, Clarke C, Zettergren A, Karlsten R, Segerdahl M. Evaluation of the analgesic efficacy and psychoactive effects of AZD1940, a novel peripherally acting cannabinoid agonist, in human capsaicin-induced pain and hyperalgesia. Clin Exp Pharmacol Physiol. 2013;40:212–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Kalliomaki J, Seqerdahl M, Webster L, Reimfelt A, Huizar K, Annas P, Karlsten R, Quiding H. Evaluation of the analgesic efficacy of AZD1940, a novel cannabinoid agonist, on post-operative pain after lower third molar surgical removal. Scan J Pain. 2013;4:17–22.CrossRefGoogle Scholar
  27. 27.
    Fanger CM, del Camino D, Moran MM. TRPA1 as an analgesic target. Open Drug Discov J. 2010;2:64–70.CrossRefGoogle Scholar
  28. 28.
    Radresa O, Dahllöf H, Nyman E, Nolting A, Alberta JS, Raboisson P. Roles of TRPA1 in pain pathophysiology and implications for the development of a new class of analgesic drugs. Open Pain J. 2013;6:S137–53.CrossRefGoogle Scholar
  29. 29.
    Trevisani M, Gatti R. TRPV1 antagonists as analgesic agents. Open Pain J. 2013;6:S108–18.CrossRefGoogle Scholar
  30. 30.
    Clapham DE. TRP channels as cellular sensors. Nature. 2003;426:517–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Montell C. Drosophila TRP channels. Pflugers Arch. 2005;451:19–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Lennertz RC, Kossyreva EA, Smith AK, Stucky CL. TRPA1 mediates mechanical sensitization in nociceptors during inflammation. PLoS One. 2012;7:e43597. doi: 10.1371/journal.pone.0043597.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Nassini R, Pedretti P, Moretto N, Fusi C, Carnini C, et al. Transient receptor potential Ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation. PLoS One. 2012;7(8):e42454. doi: 10.1371/journal.pone.0042454.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F, Marsh S, Woods CG, Jones NG, Paterson KJ, Fricer FR, Villegas A, Acosta N, Pineda-Trujillo NG, Ramirez JD, Zea J, Burley MW, Bedoya G, Bennett DL, Wood JN, Ruiz-Linares A. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 2010;66(5):671–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Matta JA, Cornett PM, Miyares RL, Abe K, Sahibzada N, Ahern GP. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc Natl Acad Sci U S A. 2008;105(25):8784–9.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kosugi M, Nakatsuka T, Fujita T, Kuroda Y, Kumamoto E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci. 2007;27:4443–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 2004;432(7018):723–30.PubMedCrossRefGoogle Scholar
  38. 38.
    A clinical trial to study the effects GRC 17536 in patients with painful diabetic peripheral neuropathy (painful extremities due to peripheral nerve damage in diabetic patients)., identifier NCT01726413. Updated and verified as of December 2012 by Glenmark Pharmaceuticals Ltd, India.
  39. 39.
    Business Wire. Cubist reports fourth quarter and full year 2012 financial results. 23 Jan 2013.
  40. 40.
    SBIR/STTR, Department of Health and Human Services. Analgesics targeting TRPA1 for treatment of chronic pain. Tracking number R43DA031516, solicitation year 2011. Principal investigator Herz, J of Algomedix, Inc.
  41. 41.
    Nyman E, Franzén B, Nolting A, Klement G, Liu G, Nilsson M, Rosén A, Björk C, Weigelt D, Wollberg P, Karila P, Raboisson P. In vitro pharmacological characterization of a novel TRPA1 antagonist and proof of mechanism in a human dental pulp model. J Pain Res. 2013;6:59–70.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Borsook D, Edward A. Antineuropathic effects of the antibiotic derivative Spicamycin, KRN5500. Pain Med. 2004;5:104–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Kobierski L, Abdi S, DiLorenzo L, Feroz N, Borsook D. A single intravenous injection of KRN5500 (antibiotic spicamycin) produces long term decreases in multiple sensory hypersensitivities in neuropathic pain. Anesth Analg. 2003;97:174–82.PubMedCrossRefGoogle Scholar
  44. 44.
    DiLorenzo L, Kobierski L, Moore KA, Borsook D. A water soluble synthetic Spicamycin derivative (San-Gly) decreases mechanical allodynia in a rodent model of neuropathic pain. Neurosci Lett. 2002;330:37–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Abdi S, Vilassova N, Decosterd I, Feroz N, Borsook D. The effects of KRN5500, a spicamycin derivative, on neuropathic and nociceptive pain models in rats. Anesth Analg. 2000;91:955–99.PubMedCrossRefGoogle Scholar
  46. 46.
    Weinstein S, Abernethy A, Spruill S, Pike I, Kelly AT, Jett LG. A Spicamycin derivative (KRN5500) provides neuropathic pain relief in patients with advanced cancer: a placebo-controlled, proof-of-concept trial. J Pain Symp Manag. 2012;43:679–91.CrossRefGoogle Scholar
  47. 47.
    Reuters Press Release. DARA BioSciences announces submission of KRN5500 to FDA for orphan designation. 29 Nov 2012.Google Scholar
  48. 48.
    Dolgin E. Panel backs pain drug studies with new safety checks. Nat Med. 2012;18:472.PubMedCrossRefGoogle Scholar
  49. 49.
    McKelvey L, Shorten G, O’Keeffe G. Nerve growth factor-mediated regulation of pain signaling and proposed new intervention strategies in clinical pain management. J Neurochem. 2013;124:276–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Davies AM. Regulation of neuronal survival and death by extracellular signals during development. Embo J. 2003;22:2537–45.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Covaceuszach S, Capsoni S, Marinelli S, Pavone F, Ceci M, Ugolini G, Vignone D, Amato G, Paoletti F, Lamba D, Cattaneo A. In vitro receptor binding properties of a “painless” NGF mutein, linked to hereditary sensory autonomic neuropathy type V. Biochem Biophys Res Commun. 2010;391:824–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Gerber RK, Nie H, Arendt-Nielsen L, Curatolo M, Graven-Nielsen T. Local pain and spreading hyperalgesia induced by intramuscular injection of nerve growth factor are not reduced by local anesthesia of the muscle. Clin J Pain. 2011;2011(27):240–7.CrossRefGoogle Scholar
  53. 53.
    Svensson P, Castrillon E, Cairns BE. Nerve growth factor evoked masseter muscle sensitization and perturbation of jaw motor function in healthy women. J Orofac Pain. 2008;22:340–8.PubMedGoogle Scholar
  54. 54.
    Rukwied R, Mayer A, Kluschina O, Obreja O, Schley M, Schmelz M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain. 2010;148:407–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu Y, Colak T, Shenoy M, Liu L, Pai R, Li C, Mehta, Pasricha PJ. Nerve growth factor modulates TRPV1 expression and function and mediates pain in chronic pancreatitis. Gastroenterology. 2011;141:370–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, Carroll K, Spencer SD, Levinson AD. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J Neurosci. 1955;15:477–91.Google Scholar
  57. 57.
    Wang H, Romano G, Frustaci ME, Sanga P, Ness S, Russell L, Fedgchin M, Kelly K, Thipphawong J. Analgesic efficacy of fulranumab in patients with painful diabetic peripheral neuropathy in a randomized, placebo-controlled, double-blind study. Neurology. 2013;80 (meeting abstract):S58.002.Google Scholar
  58. 58.
    Minde J, Toolanen G, Andersson T, Nennesmo I, Remahl IN, Svensson O, Solders G. Familial insensitivity to pain (HSAN V) and a mutation in the NGFB gene. A neurophysiological and pathological study. Muscle Nerve. 2004;30:752–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Carey K. Anti-nerve growth factor drugs exonerated. Nat Biotechnol. 2012;30:298.CrossRefGoogle Scholar
  60. 60.
    Loftus P. J&J delays plans for arthritis drug as FDA continues hold on testing. Wall Street J. 2013.
  61. 61. Study to evaluate safety/efficacy of a single pre-op dose of AYX1 injection to treat pain after knee replacement surgery. Identifier NCT01731730, verified March 2013.Google Scholar
  62. 62.
    Chen Z, Janes K, Chen C, Doyle T, Bryant L, Tosh DK, Jacobson KA, Salvemini D. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J. 2012;26:1855–65. doi: 10.1096/fj.11-201541. Epub 2012 Feb 17.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Zou W, Song Z, Guo Q, Liu C, Zhang Z, Zhang Y. Intrathecal lentiviral-mediated RNA interference targeting PKCγ attenuates chronic constriction injury-induced neuropathic pain in rats. Hum Gene Ther. 2011;22:465–75. doi: 10.1089/hum.2010.207. Epub 2011 Feb 26.PubMedCrossRefGoogle Scholar
  64. 64.
  65. 65.
    Ossipov M. The perception and endogenous modulation of pain. Scientifica. 2012:561761, 25 p, Hindawi Publishing Corp.
  66. 66.
    GEN. Teva Enters Up-to-$376 M deal for xenon pain drug. 11 Dec 2012.
  67. 67.
    Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, Winters C, Price J, Young CE, Verschoof H, Sherrington R, Pimstone SN, Hayden MR. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain. 2012;153:80–5. doi: 10.1016/j.pain.2011.09.008. Epub 2011 Oct 28.PubMedCrossRefGoogle Scholar
  68. 68.
    Wall Street Journal. Teva gets orphan drug designation for XEN402. 2013 April 23.Google Scholar
  69. 69.
    Anand P, Shenoy R, Palmer J, Baines AJ, Lai RK, Robertson J, Bird N, Ostenfeld T, Chizh BA. Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain. 2011;15:1040–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Redlich K, Schett G, Steiner G, Hayer S, Wagner EF, Smolen JS. Rheumatoid arthritis therapy after tumor necrosis factor and interleukin-1 blockade. Arthritis Rheum. 2003;48:3308–19.PubMedCrossRefGoogle Scholar
  71. 71.
    Cohen SP, Bogduk N, Dragovich A, Buckenmaier 3rd CC, Griffith S, Kurihara C, et al. Randomized, double-blind, placebo-controlled, dose-response, and preclinical safety study of transforaminal epidural etanercept for the treatment of sciatica. Anesthesiology. 2009;110:1116–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Sweitzer SM, Medicherla S, Almirez R, Dugar S, Chakravarty S, Shumilla JA, et al. Antinociceptive action of a p38alpha MAPK inhibitor, SD-282, in a diabetic neuropathy model. Pain. 2004;109:409–19.PubMedCrossRefGoogle Scholar
  73. 73.
    Ji RR, Gereau 4th RW, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60:135–48.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, Fukuoka T, Tokunaga A, Noguchi K. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 2004;24:10211–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Ostenfeld T, Krishen A, Lai RY, Bullman J, Baines AJ, Green J, Anand P, Kelly M. Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain following peripheral nerve injury: a double-blind, placebo-controlled study. Eur J Pain. 2013;17:844–57. doi: 10.1002/j.1532-2149.2012.00256.x. Epub 2012 Dec 14.PubMedCrossRefGoogle Scholar
  76. 76.
    GlaxoSmithKline study register, Study No: KIP113049, completed August 2010,
  77. 77.
    Melloni C, Sprecher DL, Sarov-Blat L, Patel MR, Heitner JF, Hamm CW, Aylward P, Tanguay JF, DeWinter RJ, Marber MS, Lerman A, Hasselblad V, Granger CB, Newby LK. The study of LoSmapimod treatment on inflammation and InfarCtSizE (SOLSTICE): design and rationale. Am Heart J. 2012;164:646–53.e3. doi: 10.1016/j.ahj.2012.07.030. Epub 2012 Oct 16.PubMedCrossRefGoogle Scholar
  78. 78.
    Tong SE, Daniels SE, Black P, Chang S, Protter A, Desjardins P. Novel p38α mitogen-activated protein kinase inhibitor shows analgesic efficacy in acute postsurgical dental pain. J Clin Pharmacol. 2012;52:717–28.PubMedCrossRefGoogle Scholar
  79. 79.
    McCarthy T. EMA401 for treating neuropathic pain. Drug Discovery and Development. 2012 Dec 4.
  80. 80.
    Chakrabarty A, Liao Z, Smith PG. Angiotensin II receptor type 2 activation is required for cutaneous sensory hyperinnervation and hypersensitivity in a rat hind paw model of inflammatory pain. J Pain. 2013;14:1053–65. doi: 10.1016/j.jpain.2013.04.002. Epub 2013 May 30.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Guasti L, Gimoldi P, Diolisi A, Petrozzino MR, Gaudio G, Grandi AM, Rossi MG, Venco A. Treatment with enalapril modified the pain perception pattern in hypertensive patients. Hypertension. 1998;31:1146–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Wexler R, Greenlee W, Irvin J, Goldberg M, Prendergast K, Smith RD, Timmermans P. Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J Med Chem. 1996;39:625–56.PubMedCrossRefGoogle Scholar
  83. 83.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of AnesthesiologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations