Bounded Control Problems

  • James M. Longuski
  • José J. Guzmán
  • John E. Prussing
Part of the Space Technology Library book series (SPTL, volume 32)


We recall that the general form of the minimization problem can be stated as


Optimal Trajectory Minimum Principle Switching Function Turn Angle Singular Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. A.E. Bryson Jr., Y.C. Ho, Applied Optimal Control (Hemisphere Publishing, Washington, D.C., 1975)Google Scholar
  2. P. Contensou, Etude théorique des trajectoires optimales dans un champ de gravitation. Application au cas d’un centre d’attraction unique. Astronaut. Acta 8, 134–150 (1962)MathSciNetGoogle Scholar
  3. B.S. Goh, Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control 4(4), 716–731 (1966)MathSciNetCrossRefMATHGoogle Scholar
  4. D.G. Hull, Optimal Control Theory for Applications (Springer, New York, 2003)CrossRefMATHGoogle Scholar
  5. H.J. Kelley, A second variation test for singular extremals. AIAA J. 2, 1380–1382 (1964)MathSciNetCrossRefMATHGoogle Scholar
  6. H.J. Kelley, R.E. Kopp, A.G. Moyer, Singular extremals, Chapter 3, in Topics in Optimization, ed. by G. Leitmann (Academic, New York, 1967), p. 63Google Scholar
  7. R.E. Kopp, A.G. Moyer, Necessary conditions for singular extremals. AIAA J. 3, 1439–1444 (1965)CrossRefMATHGoogle Scholar
  8. J.P. Marec, Optimal Space Trajectories (Elsevier Scientific, New York, 1979)MATHGoogle Scholar
  9. A. Miele, Flight mechanics and variational problems of a linear type. J. Aerosp. Sci. 25(9), 581–590 (1958)CrossRefMATHGoogle Scholar
  10. H.M. Robbins, A generalized Legendre-Clebsch condition for the singular cases of optimal control. IBM J. Res. Dev. 11(4), 361–372 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. K.S. Tait, Singular problems in optimal control. PhD thesis, Harvard University, Cambridge (1965)Google Scholar
  12. J. Vagners, Optimization techniques, in Handbook of Applied Mathematics, 2nd edn., ed. by C.E. Pearson (Van Nostrand Reinhold, New York, 1983), pp. 1140–1216Google Scholar

Copyright information

© Springer Science + Business Media New York 2014

Authors and Affiliations

  • James M. Longuski
    • 1
  • José J. Guzmán
    • 2
  • John E. Prussing
    • 3
  1. 1.Purdue UniversityLafayetteUSA
  2. 2.Orbital Sciences CorporationChantillyUSA
  3. 3.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations