Skip to main content

Anesthesiology and Intraoperative Electrophysiological Monitoring

  • Chapter
  • First Online:
  • 2558 Accesses

Abstract

The role of the anesthesiologist during procedures where intraoperative electrophysiological monitoring (IOM) is being performed involves anesthetic titration, attaining physiological homeostasis, and medical management of the patient. Further, the anesthesiologist participates in mitigating neural injury when the monitoring indicates that the nervous system may be at risk for injury. More specifically, the choice of anesthetic agents directly impacts the ability to reliably record IOM responses, and the physiological management (e.g., blood pressure) impacts on the reserve of the nervous system to tolerate procedural trespass. When altered responses indicate the health of the nervous system may be compromised, the insights of the anesthesiologist and the ability to improve the physiological reserve are keys to reducing neurological risk. This chapter is written to discuss these aspects to improve integration of the anesthesiologist into the IOM monitoring team effort.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322(5903):876–80.

    Article  PubMed  CAS  Google Scholar 

  2. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol. 2005;17(1):13–9.

    PubMed  Google Scholar 

  3. Nickalls RW, Mapleson WW. Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth. 2003;91(2):170–4.

    Article  PubMed  CAS  Google Scholar 

  4. Miller RD, et al., editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill-Livingstone Elsevier; 2010.

    Google Scholar 

  5. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology. 2005;102(2):447–71.

    Article  PubMed  Google Scholar 

  6. Mavroudakis N, et al. Spinal and brain-stem SEPs and H reflex during enflurane anesthesia. Electroencephalogr Clin Neurophysiol. 1994;92(1):82–5.

    Article  PubMed  CAS  Google Scholar 

  7. Ohara A, et al. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85(4):931–6.

    PubMed  CAS  Google Scholar 

  8. Sloan TB. Evoked potentials. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 221–76.

    Google Scholar 

  9. van Dongen EP, et al. The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth. 1999;13(1):30–4.

    Article  PubMed  Google Scholar 

  10. van Dongen EP, et al. Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth. 1999;82(3):323–8.

    Article  PubMed  Google Scholar 

  11. Sakamoto T, et al. Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth. 2001;86(3):395–402.

    Article  PubMed  CAS  Google Scholar 

  12. Sloan T, Sloan H, Rogers J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J Clin Monit Comput. 2010;24(2):113–23.

    Article  PubMed  Google Scholar 

  13. Logginidou HG, et al. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97(6):1784–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kawaguchi M, Furuya H. Intraoperative spinal cord monitoring of motor function with myogenic motor evoked potentials: a consideration in anesthesia. J Anesth. 2004;18(1):18–28.

    Article  PubMed  Google Scholar 

  15. Altermatt FR, et al. Evaluation of the effect of intravenous lidocaine on propofol requirements during total intravenous anaesthesia as measured by bispectral index. Br J Anaesth. 2012;108(6):979–83.

    Article  PubMed  CAS  Google Scholar 

  16. Cassuto J, et al. Inhibition of postoperative pain by continuous low-dose intravenous infusion of lidocaine. Anesth Analg. 1985;64(10):971–4.

    Article  PubMed  CAS  Google Scholar 

  17. Sneyd JR, Rigby-Jones AE. New drugs and technologies, intravenous anaesthesia is on the move (again). Br J Anaesth. 2010;105(3):246–54.

    Article  PubMed  CAS  Google Scholar 

  18. Jones AE. The etomidate debate. Ann Emerg Med. 2010;56(5):490–1.

    Article  PubMed  Google Scholar 

  19. Cherfan AJ, et al. Advantages and disadvantages of etomidate use for intubation of patients with sepsis. Pharmacotherapy. 2012;32(5):475–82.

    Article  PubMed  CAS  Google Scholar 

  20. Kochs E, Treede RD, Schulte am Esch J. [Increase in somatosensory evoked potentials during anesthesia induction with etomidate]. Anaesthesist. 1986;35(6):359–64.

    PubMed  CAS  Google Scholar 

  21. Sloan TB, et al. Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg. 1988;67(6):582–5.

    Article  PubMed  CAS  Google Scholar 

  22. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology. 1986;65(6):584–9.

    Article  PubMed  CAS  Google Scholar 

  23. Russ W, et al. [Somatosensory evoked potentials under thiopental and etomidate]. Anaesthesist. 1986;35(11):679–85.

    PubMed  CAS  Google Scholar 

  24. Koht A, et al. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67(5):435–41.

    Article  PubMed  CAS  Google Scholar 

  25. Langeron O, et al. Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth. 1997;78(6):701–6.

    Article  PubMed  CAS  Google Scholar 

  26. Rampil IJ. Electroencephalogram. In: Albin MA, editor. Textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. New York: McGraw-Hill; 1997. p. 193–220.

    Google Scholar 

  27. Sloan TB, Fugina ML, Toleikis JR. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth. 1990;64(5):590–3.

    Article  PubMed  CAS  Google Scholar 

  28. Kalkman CJ, et al. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9.

    Article  PubMed  CAS  Google Scholar 

  29. Scheufler K-M, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96(3):571–9.

    Article  PubMed  CAS  Google Scholar 

  30. Zentner J. Motor evoked potential monitoring in operations of the brainstem and posterior fossa. In: Schramm J, Moller AR, editors. Intraop neurophysiol monitoring. Berlin: Springer; 1991. p. 95–105.

    Google Scholar 

  31. Ghaly RF, et al. The effect of an anesthetic induction dose of midazolam on motor potentials evoked by transcranial magnetic stimulation in the monkey. J Neurosurg Anesthesiol. 1991;3:20–5.

    Article  PubMed  CAS  Google Scholar 

  32. Schonle PW, et al. Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett. 1989;101(3):321–4.

    Article  PubMed  CAS  Google Scholar 

  33. Crawford ME, et al. Direct spinal effect of intrathecal and extradural midazolam on visceral noxius stimulation in rabbits. Br J Anaesth. 1993;70:642–6.

    Article  PubMed  CAS  Google Scholar 

  34. Faull RL, Villiger JW. Benzodiazepine receptors in the human spinal cord: a detailed anatomical and pharmacological study. Neuroscience. 1986;17(3):791–802.

    Article  PubMed  CAS  Google Scholar 

  35. Tobias JD, et al. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.

    Article  PubMed  Google Scholar 

  36. Yamamoto Y, et al. The effects of dexmedetomidine on myogenic motor evoked potentials in rabbits. Anesth Analg. 2007;104(6):1488–92.

    Article  PubMed  CAS  Google Scholar 

  37. Mahmoud M, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73. doi:10.1097/ALN.0b013e3181d74f55.

    Article  PubMed  CAS  Google Scholar 

  38. Lauretti GR. Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008;58(3):280–6.

    Article  PubMed  CAS  Google Scholar 

  39. Asouhido I, et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis. 2010;5:8–13.

    Article  Google Scholar 

  40. Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990;72(1):33–9 [erratum appears in Anesthesiology 1990 Jun;72(6):1104].

    Article  PubMed  CAS  Google Scholar 

  41. Schwender D, et al. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans. Br J Anaesth. 1993;71(5):629–32.

    Article  PubMed  CAS  Google Scholar 

  42. Kano T, Shimoji K. The effects of ketamine and neuroleptanalgesia on the evoked electrospinogram and electromyogram in man. Anesthesiology. 1974;40(3):241–6.

    Article  PubMed  CAS  Google Scholar 

  43. Glassman SD, et al. Anesthetic effects on motor evoked potentials in dogs. Spine. 1993;18(8):1083–9.

    Article  PubMed  CAS  Google Scholar 

  44. Taniguchi M, et al. Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery. 1993;33(3):407–15. Discussion 415.

    Article  PubMed  CAS  Google Scholar 

  45. Kaba A, et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology. 2007;106(1):11–8. Discussion 5–6.

    Article  PubMed  CAS  Google Scholar 

  46. Lauwick S, et al. Intraoperative infusion of lidocaine reduces postoperative fentanyl requirements in patients undergoing laparoscopic cholecystectomy. Can J Anaesth. 2008;55(11):754–60.

    Article  PubMed  Google Scholar 

  47. Kuo CP, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97(5):640–6.

    Article  PubMed  CAS  Google Scholar 

  48. Sugimoto M, Uchida I, Mashimo T. Local anaesthetics have different mechanisms and sites of action at the recombinant N-methyl-D-aspartate (NMDA) receptors. Br J Pharmacol. 2003;138(5):876–82.

    Article  PubMed  CAS  Google Scholar 

  49. Gottschalk A, et al. Systemic lidocaine decreases the Bispectral Index in the presence of midazolam, but not its absence. J Clin Anesth. 2012;24(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  50. Senturk M, et al. Effects of intramuscular administration of lidocaine or bupivacaine on induction and maintenance doses of propofol evaluated by bispectral index. Br J Anaesth. 2002;89(6):849–52.

    Article  PubMed  CAS  Google Scholar 

  51. Borges LF. Motor evoked potentials. Int Anesthesiol Clin. 1990;28:170–3.

    Article  PubMed  CAS  Google Scholar 

  52. Kothbauer K. Motor evoked potential monitoring for intramedullary spinal cord surgery. In: Deletis V, Shills J, editors. Neurophysiology in neurosurgery: a modern approach. Amsterdam: Academic; 2002. p. 73–92.

    Chapter  Google Scholar 

  53. Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103(1):108–14.

    Article  PubMed  CAS  Google Scholar 

  54. Ghai B, Makkar JK, Wig J. Neuromuscular monitoring: a review. J Anesthesiol Clin Pharmacol. 2006;22(4):347–56.

    Google Scholar 

  55. Davis L, Britten JJ, Morgan M. Cholinesterase. Its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.

    Article  PubMed  CAS  Google Scholar 

  56. Jonsson M, et al. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105(3):521–33.

    Article  PubMed  CAS  Google Scholar 

  57. Bowman WC. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980;59(12):935–43.

    Article  PubMed  CAS  Google Scholar 

  58. Fodale V, Santamaria LB. Laudanosine, an atracurium and cisatracurium metabolite. Eur J Anaesthesiol. 2002;19(7):466–73.

    PubMed  CAS  Google Scholar 

  59. Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology. 1992;77(4):785–805.

    Article  PubMed  CAS  Google Scholar 

  60. Lee C, Katz RL. Fade of neurally evoked compound electromyogram during neuromuscular block by d-tubocurarine. Anesth Analg. 1977;56(2):271–5.

    PubMed  CAS  Google Scholar 

  61. Sloan TB. Muscle relaxant use during intraoperative neurophysiologic monitoring. J Clin Monit Comput. 2013;27:35–46.

    Article  PubMed  Google Scholar 

  62. Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.

    Article  PubMed  Google Scholar 

  63. May DM, Jones SJ, Crockard HA. Somatosensory evoked potential monitoring in cervical surgery: identification of pre- and intraoperative risk factors associated with neurological deterioration. J Neurosurg. 1996;85(4):566–73.

    Article  PubMed  CAS  Google Scholar 

  64. Drummond JC. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997;86(6):1431–3.

    Article  PubMed  CAS  Google Scholar 

  65. Seyal M, Mull B. Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):409–15.

    Article  PubMed  Google Scholar 

  66. Wiedemayer H, et al. The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg. 2002;96(2):255–62.

    Article  PubMed  Google Scholar 

  67. Brodkey JS, et al. Reversible spinal cord trauma in cats: additive effects of direct pressure and ischemia. J Neurosurg. 1972;37:591–3.

    Article  PubMed  CAS  Google Scholar 

  68. Dolan EJ, et al. The effect of spinal distraction on regional blood flow in cats. J Neurosurg. 1980;53:756–64.

    Article  PubMed  CAS  Google Scholar 

  69. Griffiths IR, Trench JG, Crawford RA. Spinal cord blood flow and conduction during experimental cord compression in normotensive and hypotensive dogs. J Neurosurg. 1979;50(3):353–60.

    Article  PubMed  CAS  Google Scholar 

  70. Sloan T. General anesthesia for monitoring. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring for the anesthesiologist and other health professionals. New York: Springer; 2012. p. 319–35.

    Chapter  Google Scholar 

  71. Manninen PH, Lam AM, Nicholas JF. The effects of isoflurane and isoflurane-nitrous oxide anesthesia on brainstem auditory evoked potentials in humans. Anesth Analg. 1985;64(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  72. Sloan T, Jameson LC. Monitoring anesthetic effect. In: Koht A, Sloan T, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health professionals. New York: Springer; 2012. p. 337–60.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tod B. Sloan M.D., M.B.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sloan, T.B., Kaye, A.D. (2014). Anesthesiology and Intraoperative Electrophysiological Monitoring. In: Kaye, A., Davis, S. (eds) Principles of Neurophysiological Assessment, Mapping, and Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8942-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8942-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8941-2

  • Online ISBN: 978-1-4614-8942-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics