Advertisement

Impedance of Porous Electrodes

  • Andrzej Lasia
Chapter

Abstract

In the industrial applications of electrochemistry, the use of smooth surfaces is impractical and the electrodes must possess a large real surface area in order to increase the total current per unit of geometric surface area. For that reason porous electrodes are usually used, for example, in industrial electrolysis, fuel cells, batteries, and supercapacitors [400]. Porous surfaces are different from rough surfaces in the depth, l, and diameter, r, of pores; for porous electrodes the ratio l/r is important. Characterization of porous electrodes can supply information about their real surface area and utilization. These factors are important in their design, and it makes no sense to design pores that are too long and that are impenetrable by a current. Impedance studies provide simple tools to characterize such materials. Initially, an electrode model was developed by several authors for dc response of porous electrodes [401–406]. Such solutions must be known first to be able to develop the ac response. In what follows, porous electrode response for ideally polarizable electrodes will be presented, followed by a response in the presence of redox processes. Finally, more elaborate models involving pore size distribution and continuous porous models will be presented.

Keywords

Pore Wall Potential Gradient Porous Electrode Total Impedance Redox Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 17.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 2001)Google Scholar
  2. 72.
    A. Lasia, Modeling of impedances of porous electrodes, in Modern Aspects of Electrochemistry, ed. by M. Schlesinger, vol. 43 (Springer, New York, 2009), pp. 67–138Google Scholar
  3. 352.
    R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 572, 355 (2004)CrossRefGoogle Scholar
  4. 400.
    I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering II (Elsevier, Amsterdam, 1986)Google Scholar
  5. 401.
    A.N. Frumkin, Zh. Fiz. Khim. 23, 1477 (1949)Google Scholar
  6. 403.
    O.S. Ksenzhek, Russ. J. Phys. Chem. 36, 331 (1962)CrossRefGoogle Scholar
  7. 405.
    F.A. Posey, J. Electrochem. Soc. 111, 1173 (1964)CrossRefGoogle Scholar
  8. 406.
    J.M. Bisang, K. Juttner, G. Kreysa, Electrochim. Acta 39, 1297 (1994)CrossRefGoogle Scholar
  9. 407.
    A. Lasia, in Modern Aspects of Electrochemistry, ed. by M. Schlesinger, vol. 43 (Springer, New York, 2009), p. 67Google Scholar
  10. 408.
    R. de Levie, in Advances in Electrochemistry and Electrochemical Engineering, ed. by P. Delahay, vol. 6 (Interscience, New York, 1967), p. 329Google Scholar
  11. 409.
    L.M. Gassa, J.R. Vilche, M. Ebert, K. Juttner, W.J. Lorenz, J. Appl. Electrochem. 20, 677 (1990)CrossRefGoogle Scholar
  12. 410.
    R. de Levie, Electrochim. Acta 8, 751 (1963)CrossRefGoogle Scholar
  13. 411.
    I.D. Raistrick, Electrochim. Acta 35, 1579 (1990)CrossRefGoogle Scholar
  14. 412.
    R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 582, 85 (2005)CrossRefGoogle Scholar
  15. 413.
    R. de Levie, Electrochim. Acta 10, 113 (1965)CrossRefGoogle Scholar
  16. 414.
    J. Gunning, J. Electroanal. Chem. 392, 1 (1995)CrossRefGoogle Scholar
  17. 415.
    H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21, 539 (1976)CrossRefGoogle Scholar
  18. 416.
    C. Hitz, A. Lasia, J. Electroanal. Chem. 500, 213 (2001)CrossRefGoogle Scholar
  19. 417.
    K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 326 (1995)Google Scholar
  20. 418.
    K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 334 (1995)Google Scholar
  21. 419.
    L. Chen, A. Lasia, J. Electrochem. Soc. 139, 3214 (1992)CrossRefGoogle Scholar
  22. 420.
    L. Chen, A. Lasia, J. Electrochem. Soc. 140, 2464 (1993)CrossRefGoogle Scholar
  23. 422.
    L. Birry, A. Lasia, J. Appl. Electrochem. 34, 735 (2004)CrossRefGoogle Scholar
  24. 423.
    Y. Gourbeyre, B. Tribollet, C. Dagbert, L. Hyspecka, J. Electrochem. Soc. 153, B162 (2006)CrossRefGoogle Scholar
  25. 424.
    M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, H. Nakazawa, J. Power Sources 164, 415 (2007)CrossRefGoogle Scholar
  26. 425.
    M. Itagaki, Y. Hatada, I. Shitanda, K. Watanabe, Electrochim. Acta 55, 6255 (2010)CrossRefGoogle Scholar
  27. 426.
    G. Paasch, K. Micka, P. Gersdorf, Electrochim. Acta 38, 2653 (1993)CrossRefGoogle Scholar
  28. 427.
    J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, A. Compte, Electrochem. Commun. 1, 429 (1999)CrossRefGoogle Scholar
  29. 429.
    J. Bisquert, Phys. Chem. Chem. Phys. 2, 4185 (2000)CrossRefGoogle Scholar
  30. 430.
    G. Lang, M. Ujvari, G. Inzelt, Electrochim. Acta 46, 4159 (2001)CrossRefGoogle Scholar
  31. 431.
    P. Los, A. Lasia, H. Menard, L. Brossard, J. Electroanal. Chem. 360, 101 (1993)Google Scholar
  32. 432.
    I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering, vol. II (Elsevier, Amsterdam, 1986), p. 133Google Scholar
  33. 433.
    K. Scott, J. Appl. Electrochem. 13, 709 (1983)CrossRefGoogle Scholar
  34. 434.
    S.I. Marshall, J. Electrochem. Soc. 138, 1040 (1991)CrossRefGoogle Scholar
  35. 435.
    A. Lasia, J. Electroanal. Chem. 397, 27 (1995)CrossRefGoogle Scholar
  36. 436.
    J.S. Newman, C.W. Tobias, J. Electrochem. Soc. 109, 1183 (1962)CrossRefGoogle Scholar
  37. 441.
    A. Lasia, J. Electroanal. Chem. 428, 155 (1997)CrossRefGoogle Scholar
  38. 443.
    A. Lasia, J. Electroanal. Chem. 500, 30 (2001)CrossRefGoogle Scholar
  39. 444.
    H. Wendt, S. Rausch, T. Borucinski, in Advances in Catalysis, vol. 40 (Academic, New York, 1994), p. 87Google Scholar
  40. 445.
    S. Rausch, H. Wendt, J. Appl. Electrochem. 22, 1025 (1992)CrossRefGoogle Scholar
  41. 446.
    D.D. Macdonald, M. Urquidi-Macdonald, S.D. Bhaktam, B.G. Pound, J. Electrochem. Soc. 138, 1359 (1991)CrossRefGoogle Scholar
  42. 447.
    D.D. Macdonald, Electrochim. Acta 51, 1376 (2006)CrossRefGoogle Scholar
  43. 448.
    S.-I. Pyun, C.-H. Kim, S.-W. Kim, J.-H. Kim, J. New Mat. Electrochem. Syst. 5, 289 (2002)Google Scholar
  44. 449.
    H.K. Song, Y.H. Jung, K.H. Lee, L.H. Dao, Electrochim. Acta 44, 3513 (1999)CrossRefGoogle Scholar
  45. 451.
    H.K. Song, J.H. Sung, Y.H. Jung, K.H. Lee, L.H. Dao, M.H. Kim, H.N. Kim, J. Electrochem. Soc. 151, E102 (2004)CrossRefGoogle Scholar
  46. 452.
    H.K. Song, J.H. Jang, J.J. Kim, S.M. Oh, Electrochem. Commun. 8, 1191 (2006)CrossRefGoogle Scholar
  47. 453.
    M. Musiani, M. Orazem, B. Tribollet, V. Vivier, Electrochim. Acta 56, 8014 (2011)CrossRefGoogle Scholar
  48. 454.
    J.S. Newman, Electrochemical Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, 1991)Google Scholar
  49. 455.
    S. Devan, V.R. Subramanian, R.E. White, J. Electrochem. Soc. 151, A905 (2004)CrossRefGoogle Scholar
  50. 456.
    M. Doyle, J.P. Meyers, J. Newman, J. Electrochem. Soc. 147, 99 (2000)CrossRefGoogle Scholar
  51. 457.
    J.P. Meyers, M. Doyle, R.M. Darling, J. Newman, J. Electrochem. Soc. 147, 2930 (2000)CrossRefGoogle Scholar
  52. 458.
    A.M. Svensson, L.O. Valeen, R. Tunold, Electrochim. Acta 50, 2647 (2005)CrossRefGoogle Scholar
  53. 459.
    T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143, 587 (1996)CrossRefGoogle Scholar
  54. 460.
    A.M. Svensson, H. Weydahl, S. Sunde, Electrochim. Acta 53, 7483 (2008)CrossRefGoogle Scholar
  55. 461.
    S. Sunde, I.A. Lervik, L.E. Owe, M. Tsypkin, J. Electrochem. Soc. 156, B927 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrzej Lasia
    • 1
  1. 1.Département de chimieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations