Skip to main content

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 6))

Abstract

Over the last decade, the transcription factor PPARγ, previously known for its essential role in regulation of metabolic processes in adipose tissue, emerged as highly promising new target for the treatment of many neurological conditions, including ischemic and hemorrhagic stroke. Based on many cell culture and animal studies, activation of PPARγ was demonstrated to be associated with a broad range of biological effects (via genomic and non-genomic mode of action in virtually all brain cell types) which could effectively ameliorate pathogenic processes triggered by stroke, including inflammation, oxidative damage, edema, BBB preservation, and excitotoxicity, as well as help in the post-stroke recovery process by modulating the macrophage-mediated brain cleanup process. Some key aspects of PPARγ as target for stroke treatment are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W (1993) Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 77:67–76

    CAS  PubMed  Google Scholar 

  2. Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz M, Moller DE et al (1996) Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 224:431–437

    CAS  PubMed  Google Scholar 

  3. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R et al (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272:18779–18789

    CAS  PubMed  Google Scholar 

  4. Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K et al (1995) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 4:281–299

    CAS  PubMed  Google Scholar 

  5. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L et al (1997) Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 100:3149–3153

    CAS  PubMed  Google Scholar 

  6. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    CAS  PubMed  Google Scholar 

  7. Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    CAS  PubMed  Google Scholar 

  8. Berger J, Wagner JA (2002) Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Diabetes Technol Ther 4:163–174

    CAS  PubMed  Google Scholar 

  9. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    CAS  PubMed  Google Scholar 

  10. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    CAS  PubMed  Google Scholar 

  11. Moller DE, Berger JP (2003) Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 27(Suppl 3):S17–S21

    CAS  PubMed  Google Scholar 

  12. Li Y, Zhang J, Schopfer FJ, Martynowski D, Garcia-Barrio MT, Kovach A et al (2008) Molecular recognition of nitrated fatty acids by PPAR gamma. Nat Struct Mol Biol 15:865–867

    CAS  PubMed  Google Scholar 

  13. Yamamoto K, Itoh T, Abe D, Shimizu M, Kanda T, Koyama T et al (2005) Identification of putative metabolites of docosahexaenoic acid as potent PPARgamma agonists and antidiabetic agents. Bioorg Med Chem Lett 15:517–522

    CAS  PubMed  Google Scholar 

  14. Itoh T, Murota I, Yoshikai K, Yamada S, Yamamoto K (2006) Synthesis of docosahexaenoic acid derivatives designed as novel PPARgamma agonists and antidiabetic agents. Bioorg Med Chem 14:98–108

    CAS  PubMed  Google Scholar 

  15. Li H, Ruan XZ, Powis SH, Fernando R, Mon WY, Wheeler DC et al (2005) EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int 67:867–874

    CAS  PubMed  Google Scholar 

  16. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819

    CAS  PubMed  Google Scholar 

  17. Yuan H, Li MY, Ma LT, Hsin MK, Mok TS, Underwood MJ et al (2010) 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax 65:321–326

    PubMed  Google Scholar 

  18. Cimen I, Astarci E, Banerjee S (2011) 15-Lipoxygenase-1 exerts its tumor suppressive role by inhibiting nuclear factor-kappa B via activation of PPAR gamma. J Cell Biochem 112:2490–2501

    CAS  PubMed  Google Scholar 

  19. Jaradat MS, Wongsud B, Phornchirasilp S, Rangwala SM, Shams G, Sutton M et al (2001) Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem Pharmacol 62:1587–1595

    CAS  PubMed  Google Scholar 

  20. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F et al (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23:9796–9804

    CAS  PubMed  Google Scholar 

  21. Lambe KG, Tugwood JD (1996) A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur J Biochem 239:1–7

    CAS  PubMed  Google Scholar 

  22. Grossman SL, Lessem J (1997) Mechanisms and clinical effects of thiazolidinediones. Expert Opin Investig Drugs 6:1025–1040

    CAS  PubMed  Google Scholar 

  23. Nattrass M, Bailey CJ (1999) New agents for type 2 diabetes. Baillieres Best Pract Res Clin Endocrinol Metab 13:309–329

    CAS  PubMed  Google Scholar 

  24. Gillies PS, Dunn CJ (2000) Pioglitazone. Drugs 60:333–343, discussion 344–335

    CAS  PubMed  Google Scholar 

  25. Goldstein BJ (2000) Rosiglitazone. Int J Clin Pract 54:333–337

    CAS  PubMed  Google Scholar 

  26. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132

    CAS  PubMed  Google Scholar 

  27. Camp HS, Tafuri SR, Leff T (1999) C-jun n-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology 140:392–397

    CAS  PubMed  Google Scholar 

  28. Mielke K, Damm A, Yang DD, Herdegen T (2000) Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Brain Res Mol Brain Res 75:128–137

    CAS  PubMed  Google Scholar 

  29. Barbin G, Roisin MP, Zalc B (2001) Tumor necrosis factor alpha activates the phosphorylation of ERK, SAPK/JNK, and p38 kinase in primary cultures of neurons. Neurochem Res 26:107–112

    CAS  PubMed  Google Scholar 

  30. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF et al (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186

    CAS  PubMed  Google Scholar 

  31. Borsello T, Croquelois K, Hornung JP, Clarke PG (2003) N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci 18:473–485

    PubMed  Google Scholar 

  32. Wang Q, Wang X, Studzinski GP (2003) Jun N-terminal kinase pathway enhances signaling of monocytic differentiation of human leukemia cells induced by 1,25-dihydroxyvitamin D3. J Cell Biochem 89:1087–1101

    CAS  PubMed  Google Scholar 

  33. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    CAS  PubMed  Google Scholar 

  34. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    CAS  PubMed  Google Scholar 

  35. Ohara M, Sawa T (1999) Current topics in the regulation of prostanoids-4. The feedback regulation by PPAR-gamma. Masui 48:146–151

    CAS  PubMed  Google Scholar 

  36. Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C et al (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22:717–726

    CAS  PubMed  Google Scholar 

  37. Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273

    CAS  PubMed  Google Scholar 

  38. Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 191:331–336

    CAS  PubMed  Google Scholar 

  39. Sundararajan S, Landreth GE (2004) Antiinflammatory properties of PPARgamma agonists following ischemia. Drug News Perspect 17:229–236

    CAS  PubMed  Google Scholar 

  40. Pereira MP, Hurtado O, Cardenas A, Alonso-Escolano D, Bosca L, Vivancos J et al (2005) The nonthiazolidinedione PPARgamma agonist l-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol 64:797–805

    CAS  PubMed  Google Scholar 

  41. Shimazu T, Inoue I, Araki N, Asano Y, Sawada M, Furuya D et al (2005) A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke 36:353–359

    CAS  PubMed  Google Scholar 

  42. Sundararajan S, Gamboa JL, Victor NA, Wanderi EW, Lust WD, Landreth GE (2005) Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 130:685–696

    CAS  PubMed  Google Scholar 

  43. Zhao Y, Patzer A, Gohlke P, Herdegen T, Culman J (2005) The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur J Neurosci 22:278–282

    PubMed  Google Scholar 

  44. Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M et al (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34:1341–1346

    CAS  PubMed  Google Scholar 

  45. Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O et al (2006) Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin j2-mediated protection of brain after experimental cerebral ischemia in rat. Brain Res 1096:196–203

    CAS  PubMed  Google Scholar 

  46. Chu K, Lee ST, Koo JS, Jung KH, Kim EH, Sinn DI et al (2006) Peroxisome proliferator-activated receptor-gamma-agonist, rosiglitazone, promotes angiogenesis after focal cerebral ischemia. Brain Res 1093:208–218

    CAS  PubMed  Google Scholar 

  47. Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S et al (2006) Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 97:435–448

    CAS  PubMed  Google Scholar 

  48. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C et al (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80

    CAS  PubMed  Google Scholar 

  49. Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Liou JY et al (2006) 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487

    CAS  PubMed  Google Scholar 

  50. Victor NA, Wanderi EW, Gamboa J, Zhao X, Aronowski J, Deininger K et al (2006) Altered PPARgamma expression and activation after transient focal ischemia in rats. Eur J Neurosci 24:1653–1663

    CAS  PubMed  Google Scholar 

  51. Culman J, Nguyen-Ngoc M, Glatz T, Gohlke P, Herdegen T, Zhao Y (2012) Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial. Exp Neurol 238:243–253

    CAS  PubMed  Google Scholar 

  52. Gonzales NR, Shah J, Sangha N, Sosa L, Martinez R, Shen L et al (2012) Design of a prospective, dose-escalation study evaluating the safety of pioglitazone for hematoma resolution in intracerebral hemorrhage (SHRINC). Int J Stroke 8(5):388–396

    PubMed  Google Scholar 

  53. Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J (2006) 15d-prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 26:811–820

    CAS  PubMed  Google Scholar 

  54. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N et al (2007) Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 61:352–362

    CAS  PubMed  Google Scholar 

  55. Hyong A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH et al (2008) Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res 1215:218–224

    CAS  PubMed  Google Scholar 

  56. Yi JH, Park SW, Brooks N, Lang BT, Vemuganti R (2008) PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res 1244:164–172

    CAS  PubMed  Google Scholar 

  57. Zhang Q, Hu W, Meng B, Tang T (2010) PPARgamma agonist rosiglitazone is neuroprotective after traumatic spinal cord injury via anti-inflammatory in adult rats. Neurol Res 32:852–859

    CAS  PubMed  Google Scholar 

  58. Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G et al (2011) Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 227:128–135

    CAS  PubMed  Google Scholar 

  59. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  60. Landreth GE, Heneka MT (2001) Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging 22:937–944

    CAS  PubMed  Google Scholar 

  61. Heneka MT, Landreth GE, Feinstein DL (2001) Role for peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease. Ann Neurol 49:276

    CAS  PubMed  Google Scholar 

  62. Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82:615–624

    CAS  PubMed  Google Scholar 

  63. Kielian T, Drew PD (2003) Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res 71:315–325

    CAS  PubMed  Google Scholar 

  64. Duvanel CB, Honegger P, Pershadsingh H, Feinstein D, Matthieu JM (2003) Inhibition of glial cell proinflammatory activities by peroxisome proliferator-activated receptor gamma agonist confers partial protection during antimyelin oligodendrocyte glycoprotein demyelination in vitro. J Neurosci Res 71:246–255

    CAS  PubMed  Google Scholar 

  65. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and INOS activation. J Neurochem 88:494–501

    CAS  PubMed  Google Scholar 

  66. Gasparini L, Ongini E, Wenk G (2004) Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J Neurochem 91:521–536

    CAS  PubMed  Google Scholar 

  67. d’Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B et al (2005) Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 391:693–698

    PubMed  Google Scholar 

  68. Heneka MT, Landreth GE, Hull M (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 3:496–504

    CAS  PubMed  Google Scholar 

  69. Heneka MT, Reyes-Irisarri E, Hull M, Kummer MP (2011) Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr Neuropharmacol 9:643–650

    CAS  PubMed  Google Scholar 

  70. Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L et al (2002) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51:694–702

    CAS  PubMed  Google Scholar 

  71. Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161:113–122

    CAS  PubMed  Google Scholar 

  72. Loria F, Petrosino S, Hernangomez M, Mestre L, Spagnolo A, Correa F et al (2010) An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol Dis 37:166–176

    CAS  PubMed  Google Scholar 

  73. Luna-Medina R, Cortes-Canteli M, Alonso M, Santos A, Martinez A, Perez-Castillo A (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation. J Biol Chem 280:21453–21462

    CAS  PubMed  Google Scholar 

  74. Dello Russo C, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP, Palmer J et al (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278:5828–5836

    CAS  PubMed  Google Scholar 

  75. Cristiano L, Bernardo A, Ceru MP (2001) Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30:671–683

    CAS  PubMed  Google Scholar 

  76. Janabi N (2002) Selective inhibition of cyclooxygenase-2 expression by 15-deoxy-delta(12,14)(12,14)-prostaglandin J(2) in activated human astrocytes, but not in human brain macrophages. J Immunol 168:4747–4755

    CAS  PubMed  Google Scholar 

  77. Roth AD, Leisewitz AV, Jung JE, Cassina P, Barbeito L, Inestrosa NC et al (2003) PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J Neurosci Res 72:425–435

    CAS  PubMed  Google Scholar 

  78. Bernardo A, Bianchi D, Magnaghi V, Minghetti L (2009) Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 68:797–808

    CAS  PubMed  Google Scholar 

  79. De Nuccio C, Bernardo A, De Simone R, Mancuso E, Magnaghi V, Visentin S et al (2011) Peroxisome proliferator-activated receptor gamma agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J Neuropathol Exp Neurol 70:900–912

    PubMed  Google Scholar 

  80. Petrova TV, Akama KT, Van Eldik LJ (1999) Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-delta12,14-prostaglandin J2. Proc Natl Acad Sci USA 96:4668–4673

    CAS  PubMed  Google Scholar 

  81. Bernardo A, Minghetti L (2006) PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des 12:93–109

    CAS  PubMed  Google Scholar 

  82. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE (2009) PPARs and the cardiovascular system. Antioxid Redox Signal 11:1415–1452

    CAS  PubMed  Google Scholar 

  83. Wu QQ, Wang Y, Senitko M, Meyer C, Wigley WC, Ferguson DA et al (2011) Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARgamma, and HO-1. Am J Physiol Renal Physiol 300:F1180–F1192

    CAS  PubMed  Google Scholar 

  84. Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z et al (2009) Neuronal PPARgamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 29:6186–6195

    CAS  PubMed  Google Scholar 

  85. Vemuganti R (2008) Therapeutic potential of PPARgamma activation in stroke. PPAR Res 2008:461981

    PubMed  Google Scholar 

  86. Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28:244–249

    CAS  PubMed  Google Scholar 

  87. Fatehi-Hassanabad Z, Tasker RA (2011) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation confers functional neuroprotection in global ischemia. Neurotox Res 19:462–471

    CAS  PubMed  Google Scholar 

  88. Dowell P, Ishmael JE, Avram D, Peterson VJ, Nevrivy DJ, Leid M (1997) P300 functions as a coactivator for the peroxisome proliferator-activated receptor alpha. J Biol Chem 272:33435–33443

    CAS  PubMed  Google Scholar 

  89. Gelman L, Zhou G, Fajas L, Raspe E, Fruchart JC, Auwerx J (1999) P300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 274:7681–7688

    CAS  PubMed  Google Scholar 

  90. Li M, Pascual G, Glass CK (2000) Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 20:4699–4707

    CAS  PubMed  Google Scholar 

  91. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH et al (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF- kappa B signaling pathway. Proc Natl Acad Sci USA 97:4844–4849

    CAS  PubMed  Google Scholar 

  92. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M et al (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of ikappaB kinase. Nature 403:103–108

    CAS  PubMed  Google Scholar 

  93. Delerive P, Gervois P, Fruchart JC, Staels B (2000) Induction of ikappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 275:36703–36707

    CAS  PubMed  Google Scholar 

  94. Cernuda-Morollon E, Rodriguez-Pascual F, Klatt P, Lamas S, Perez-Sala D (2002) PPAR agonists amplify inos expression while inhibiting NF-kappaB: implications for mesangial cell activation by cytokines. J Am Soc Nephrol 13:2223–2231

    CAS  PubMed  Google Scholar 

  95. Heneka MT, Gavrilyuk V, Landreth GE, O’Banion MK, Weinberg G, Feinstein DL (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on ikappaB and HSP70 expression. J Neurochem 85:387–398

    CAS  PubMed  Google Scholar 

  96. Uryu S, Harada J, Hisamoto M, Oda T (2002) Troglitazone inhibits both post-glutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons. Brain Res 924:229–236

    CAS  PubMed  Google Scholar 

  97. Zhao X, Ou Z, Grotta JC, Waxham N, Aronowski J (2006) Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity. Brain Res 1073–1074:460–469

    PubMed  Google Scholar 

  98. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D et al (2001) The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    CAS  PubMed  Google Scholar 

  99. Asada K, Sasaki S, Suda T, Chida K, Nakamura H (2004) Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages. Am J Respir Crit Care Med 169:195–200

    PubMed  Google Scholar 

  100. Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW et al (2004) Cd36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189:204–213

    CAS  PubMed  Google Scholar 

  101. Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L (2007) PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol 37:1343–1354

    CAS  PubMed  Google Scholar 

  102. Zheng Z, Lee JE, Yenari MA (2003) Stroke: molecular mechanisms and potential targets for treatment. Curr Mol Med 3:361–372

    CAS  PubMed  Google Scholar 

  103. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136

    CAS  PubMed  Google Scholar 

  104. Wen YD, Zhang HL, Qin ZH (2006) Inflammatory mechanism in ischemic neuronal injury. Neurosci Bull 22:171–182

    CAS  PubMed  Google Scholar 

  105. Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    CAS  PubMed  Google Scholar 

  106. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38

    CAS  PubMed  Google Scholar 

  107. Brea D, Sobrino T, Ramos-Cabrer P, Castillo J (2009) Inflammatory and neuroimmunomodulatory changes in acute cerebral ischemia. Cerebrovasc Dis 27(Suppl 1):48–64

    CAS  PubMed  Google Scholar 

  108. Candelario-Jalil E (2009) Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr Opin Investig Drugs 10:644–654

    CAS  PubMed  Google Scholar 

  109. Guo MF, Yu JZ, Ma CG (2011) Mechanisms related to neuron injury and death in cerebral hypoxic ischaemia. Folia Neuropathol 49:78–87

    PubMed  Google Scholar 

  110. Zhang YQ, Zhang YN, Wu J, Zhu XY, Xu CQ (2005) Effect of peroxisome proliferation activated receptor-gamma on neuronal cell death induced by hypoxia and ischemia in rats in vitro and in vivo. Zhonghua Yi Xue Za Zhi 85:684–688

    CAS  PubMed  Google Scholar 

  111. Clemens JA (2000) Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic Biol Med 28:1526–1531

    CAS  PubMed  Google Scholar 

  112. Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    CAS  PubMed  Google Scholar 

  113. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Pinto A et al (2009) Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem 9:1317–1334

    CAS  PubMed  Google Scholar 

  114. Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC (2011) Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215

    CAS  PubMed  Google Scholar 

  115. Girnun GD, Domann FE, Moore SA, Robbins ME (2002) Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol Endocrinol 16:2793–2801

    CAS  PubMed  Google Scholar 

  116. Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW et al (2007) Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J Neurol Sci 253:53–60

    CAS  PubMed  Google Scholar 

  117. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  118. Moreno S, Mugnaini E, Ceru MP (1995) Immunocytochemical localization of catalase in the central nervous system of the rat. J Histochem Cytochem 43:1253–1267

    CAS  PubMed  Google Scholar 

  119. Kwak MK, Itoh K, Yamamoto M, Sutter TR, Kensler TW (2001) Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol Med 7:135–145

    CAS  PubMed  Google Scholar 

  120. Gu W, Zhao H, Yenari MA, Sapolsky RM, Steinberg GK (2004) Catalase over-expression protects striatal neurons from transient focal cerebral ischemia. Neuroreport 15:413–416

    CAS  PubMed  Google Scholar 

  121. Mahadik SP, Makar TK, Murthy JN, Ortiz A, Wakade CG, Karpiak SE (1993) Temporal changes in superoxide dismutase, glutathione peroxidase, and catalase levels in primary and peri-ischemic tissue. Monosialoganglioside (GM1) treatment effects. Mol Chem Neuropathol 18:1–14

    CAS  PubMed  Google Scholar 

  122. Ye R, Li N, Han J, Kong X, Cao R, Rao Z et al (2009) Neuroprotective effects of ginsenoside RD against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res 64:306–310

    CAS  PubMed  Google Scholar 

  123. Ricart KC, Fiszman ML (2001) Hydrogen peroxide-induced neurotoxicity in cultured cortical cells grown in serum-free and serum-containing media. Neurochem Res 26:801–808

    CAS  PubMed  Google Scholar 

  124. Amantea D, Marrone MC, Nistico R, Federici M, Bagetta G, Bernardi G et al (2009) Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. Int Rev Neurobiol 85:363–374

    CAS  PubMed  Google Scholar 

  125. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF et al (1997) Reduction of cuzn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189

    CAS  PubMed  Google Scholar 

  126. Chan PH (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol 4:59–65

    CAS  PubMed  Google Scholar 

  127. Sambrano GR, Steinberg D (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci USA 92:1396–1400

    CAS  PubMed  Google Scholar 

  128. Fadok VA, Warner ML, Bratton DL, Henson PM (1998) Cd36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161:6250–6257

    CAS  PubMed  Google Scholar 

  129. Yamada Y, Doi T, Hamakubo T, Kodama T (1998) Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54:628–640

    CAS  PubMed  Google Scholar 

  130. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    CAS  PubMed  Google Scholar 

  131. Stolzing A, Grune T (2004) Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. FASEB J 18:743–745

    CAS  PubMed  Google Scholar 

  132. Nicholson AC (2004) Expression of cd36 in macrophages and atherosclerosis: the role of lipid regulation of PPARgamma signaling. Trends Cardiovasc Med 14:8–12

    CAS  PubMed  Google Scholar 

  133. Vinals M, Bermudez I, Llaverias G, Alegret M, Sanchez RM, Vazquez-Carrera M et al (2005) Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc Res 66:141–149

    CAS  PubMed  Google Scholar 

  134. Hebbel RP, Miller WJ (1984) Phagocytosis of sickle erythrocytes: immunologic and oxidative determinants of hemolytic anemia. Blood 64:733–741

    CAS  PubMed  Google Scholar 

  135. Schwartz RS, Tanaka Y, Fidler IJ, Chiu DT, Lubin B, Schroit AJ (1985) Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Invest 75:1965–1972

    CAS  PubMed  Google Scholar 

  136. Connor J, Pak CC, Schroit AJ (1994) Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J Biol Chem 269:2399–2404

    CAS  PubMed  Google Scholar 

  137. Haslett C, Savill JS, Whyte MK, Stern M, Dransfield I, Meagher LC (1994) Granulocyte apoptosis and the control of inflammation. Philos Trans R Soc Lond B Biol Sci 345:327–333

    CAS  PubMed  Google Scholar 

  138. Ren Y, Silverstein RL, Allen J, Savill J (1995) Cd36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 181:1857–1862

    CAS  PubMed  Google Scholar 

  139. Navazo MD, Daviet L, Savill J, Ren Y, Leung LL, McGregor JL (1996) Identification of a domain (155–183) on CD36 implicated in the phagocytosis of apoptotic neutrophils. J Biol Chem 271:15381–15385

    CAS  PubMed  Google Scholar 

  140. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    CAS  PubMed  Google Scholar 

  141. Babaev VR, Yancey PG, Ryzhov SV, Kon V, Breyer MD, Magnuson MA et al (2005) Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25:1647–1653

    CAS  PubMed  Google Scholar 

  142. Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, Yamamoto M et al (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94:609–616

    CAS  PubMed  Google Scholar 

  143. Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL et al (2008) Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One 3:e3791

    PubMed  Google Scholar 

  144. Maruyama A, Tsukamoto S, Nishikawa K, Yoshida A, Harada N, Motojima K et al (2008) Nrf2 regulates the alternative first exons of CD36 in macrophages through specific antioxidant response elements. Arch Biochem Biophys 477:139–145

    CAS  PubMed  Google Scholar 

  145. Olagnier D, Lavergne RA, Meunier E, Lefevre L, Dardenne C, Aubouy A et al (2011) Nrf2, a PPARgamma alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria. PLoS Pathog 7:e1002254

    CAS  PubMed  Google Scholar 

  146. Savill J (1997) Recognition and phagocytosis of cells undergoing apoptosis. Br Med Bull 53:491–508

    CAS  PubMed  Google Scholar 

  147. Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K et al (2001) Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 947:214–222, discussion 222–213

    CAS  PubMed  Google Scholar 

  148. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40:195–205

    PubMed  Google Scholar 

  149. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized ldl regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    CAS  PubMed  Google Scholar 

  150. Eto M, Yoshikawa H, Fujimura H, Naba I, Sumi-Akamaru H, Takayasu S et al (2003) The role of cd36 in peripheral nerve remyelination after crush injury. Eur J Neurosci 17:2659–2666

    PubMed  Google Scholar 

  151. Janabi M, Yamashita S, Hirano K, Sakai N, Hiraoka H, Matsumoto K et al (2000) Oxidized LDL-induced NF-kappa b activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from cd36-deficient patients. Arterioscler Thromb Vasc Biol 20:1953–1960

    CAS  PubMed  Google Scholar 

  152. Cho S, Park EM, Febbraio M, Anrather J, Park L, Racchumi G et al (2005) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 25:2504–2512

    CAS  PubMed  Google Scholar 

  153. Woo MS, Wang X, Faustino JV, Derugin N, Wendland MF, Zhou P et al (2012) Genetic deletion of CD36 enhances injury after acute neonatal stroke. Ann Neurol 72:961–970

    CAS  PubMed  Google Scholar 

  154. Majno G (1975) The healing hand: man and wound in the ancient world. Harvard University Press, Cambridge, MA

    Google Scholar 

  155. Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 9:4416–4429

    CAS  PubMed  Google Scholar 

  156. Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP (1993) Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-coa oxidase genes but differentially induce expression. Proc Natl Acad Sci USA 90:5723–5727

    CAS  PubMed  Google Scholar 

  157. Aperlo C, Pognonec P, Saladin R, Auwerx J, Boulukos KE (1995) Cdna cloning and characterization of the transcriptional activities of the hamster peroxisome proliferator-activated receptor happar gamma. Gene 162:297–302

    CAS  PubMed  Google Scholar 

  158. Mukherjee R, Davies PJ, Crombie DL, Bischoff ED, Cesario RM, Jow L et al (1997) Sensitization of diabetic and obese mice to insulin by retinoid x receptor agonists. Nature 386:407–410

    CAS  PubMed  Google Scholar 

  159. Mukherjee R, Jow L, Croston GE, Paterniti JR Jr (1997) Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid x receptor agonists and antagonists. J Biol Chem 272:8071–8076

    CAS  PubMed  Google Scholar 

  160. Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD et al (1997) Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid x receptor. Proc Natl Acad Sci U S A 94:237–241

    CAS  PubMed  Google Scholar 

  161. Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK (2004) Ligands for the peroxisome proliferator-activated receptor-gamma and the retinoid x receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol 148:116–126

    CAS  PubMed  Google Scholar 

  162. Okuma Y, Uehara T, Miyazaki H, Miyasaka T, Nomura Y (1998) The involvement of cytokines, chemokines and inducible nitric oxide synthase (INOS) induced by a transient ischemia in neuronal survival/death in rat brain. Nihon Yakurigaku Zasshi 111:37–44

    CAS  PubMed  Google Scholar 

  163. Forster C, Clark HB, Ross ME, Iadecola C (1999) Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathol 97:215–220

    CAS  PubMed  Google Scholar 

  164. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    CAS  PubMed  Google Scholar 

  165. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    CAS  PubMed  Google Scholar 

  166. Stowe AM, Adair-Kirk TL, Gonzales ER, Perez RS, Shah AR, Park TS et al (2009) Neutrophil elastase and neurovascular injury following focal stroke and reperfusion. Neurobiol Dis 35:82–90

    CAS  PubMed  Google Scholar 

  167. Ishrat T, Sayeed I, Atif F, Hua F, Stein DG (2010) Progesterone and allopregnanolone attenuate blood–brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol 226:183–190

    CAS  PubMed  Google Scholar 

  168. Jin R, Yang G, Li G (2010) Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 38:376–385

    CAS  PubMed  Google Scholar 

  169. Chung SW, Kang BY, Kim SH, Pak YK, Cho D, Trinchieri G et al (2000) Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-gamma and nuclear factor-kappa B. J Biol Chem 275:32681–32687

    CAS  PubMed  Google Scholar 

  170. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143

    CAS  PubMed  Google Scholar 

  171. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91:9926–9930

    CAS  PubMed  Google Scholar 

  172. Ishii T, Itoh K, Yamamoto M (2002) Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol 348:182–190

    CAS  PubMed  Google Scholar 

  173. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391

    CAS  PubMed  Google Scholar 

  174. Giudice A, Montella M (2006) Activation of the Nrf2-are signaling pathway: a promising strategy in cancer prevention. Bioessays 28:169–181

    CAS  PubMed  Google Scholar 

  175. Lee JM, Shih AY, Murphy TH, Johnson JA (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex i inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278:37948–37956

    CAS  PubMed  Google Scholar 

  176. Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    CAS  PubMed  Google Scholar 

  177. Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    CAS  PubMed  Google Scholar 

  178. Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S et al (2006) Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 20:2624–2626

    CAS  PubMed  Google Scholar 

  179. Kraft AD, Lee JM, Johnson DA, Kan YW, Johnson JA (2006) Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. J Neurochem 98:1852–1865

    CAS  PubMed  Google Scholar 

  180. Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M et al (2006) Activation of the keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc Natl Acad Sci USA 103:768–773

    CAS  PubMed  Google Scholar 

  181. Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393:108–112

    CAS  PubMed  Google Scholar 

  182. van Muiswinkel FL, Kuiperij HB (2005) The nrf2-are signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4:267–281

    PubMed  Google Scholar 

  183. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P et al (2005) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280:22925–22936

    CAS  PubMed  Google Scholar 

  184. Park EY, Cho IJ, Kim SG (2004) Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione s-transferase gene by the peroxisome proliferator-activated receptor-gamma and retinoid x receptor heterodimer. Cancer Res 64:3701–3713

    CAS  PubMed  Google Scholar 

  185. Cho HY, Gladwell W, Wang X, Chorley B, Bell D, Reddy SP et al (2010) Nrf2-regulated PPAR{gamma} expression is critical to protection against acute lung injury in mice. Am J Respir Crit Care Med 182:170–182

    CAS  PubMed  Google Scholar 

  186. Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappab activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23

    CAS  PubMed  Google Scholar 

  187. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW et al (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984–995

    CAS  PubMed  Google Scholar 

  188. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    CAS  PubMed  Google Scholar 

  189. Higgins LG, Hayes JD (2011) Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 43:92–137

    CAS  PubMed  Google Scholar 

  190. Polvani S, Tarocchi M, Galli A (2012) PPARgamma and oxidative stress: con(beta) catenating Nrf2 and foxo. PPAR Res 2012:641087

    PubMed  Google Scholar 

  191. Smith SA, Monteith GR, Holman NA, Robinson JA, May FJ, Roberts-Thomson SJ (2003) Effects of peroxisome proliferator-activated receptor gamma ligands ciglitazone and 15-deoxy-delta 12,14-prostaglandin J2 on rat cultured cerebellar granule neuronal viability. J Neurosci Res 72:747–755

    CAS  PubMed  Google Scholar 

  192. Rohn TT, Wong SM, Cotman CW, Cribbs DH (2001) 15-deoxy-delta12,14-prostaglandin J2, a specific ligand for peroxisome proliferator-activated receptor-gamma, induces neuronal apoptosis. Neuroreport 12:839–843

    CAS  PubMed  Google Scholar 

  193. Kondo M, Shibata T, Kumagai T, Osawa T, Shibata N, Kobayashi M et al (2002) 15-deoxy-delta(12,14)-prostaglandin J(2): the endogenous electrophile that induces neuronal apoptosis. Proc Natl Acad Sci USA 99:7367–7372

    CAS  PubMed  Google Scholar 

  194. Castrillo A, Diaz-Guerra MJ, Hortelano S, Martin-Sanz P, Bosca L (2000) Inhibition of ikappaB kinase and ikappaB phosphorylation by 15-deoxy- delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 20:1692–1698

    CAS  PubMed  Google Scholar 

  195. Cernuda-Morollon E, Pineda-Molina E, Canada FJ, Perez-Sala D (2001) 15-deoxy-delta 12,14-prostaglandin J2 inhibition of nf-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem 276:35530–35536

    CAS  PubMed  Google Scholar 

  196. Campo PA, Das S, Hsiang CH, Bui T, Samuel CE, Straus DS (2002) Translational regulation of cyclin d1 by 15-deoxy-delta(12,14)-prostaglandin J(2). Cell Growth Differ 13:409–420

    CAS  PubMed  Google Scholar 

  197. Oliva JL, Perez-Sala D, Castrillo A, Martinez N, Canada FJ, Bosca L et al (2003) The cyclopentenone 15-deoxy-delta 12,14-prostaglandin J2 binds to and activates H-Ras. Proc Natl Acad Sci USA 100:4772–4777

    CAS  PubMed  Google Scholar 

  198. Park EJ, Park SY, Joe EH, Jou I (2003) 15d-PGJ2 and rosiglitazone suppress Janus kinase-stat inflammatory signaling through induction of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 in glia. J Biol Chem 278:14747–14752

    CAS  PubMed  Google Scholar 

  199. Diamant M, Heine RJ (2003) Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs 63:1373–1405

    CAS  PubMed  Google Scholar 

  200. Belcher G, Lambert C, Edwards G, Urquhart R, Matthews DR (2005) Safety and tolerability of pioglitazone, metformin, and gliclazide in the treatment of type 2 diabetes. Diabetes Res Clin Pract 70:53–62

    CAS  PubMed  Google Scholar 

  201. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298:1180–1188

    CAS  PubMed  Google Scholar 

  202. Dana SL, Hoener PA, Bilakovics JM, Crombie DL, Ogilvie KM, Kauffman RF et al (2001) Peroxisome proliferator-activated receptor subtype-specific regulation of hepatic and peripheral gene expression in the zucker diabetic fatty rat. Metabolism 50:963–971

    CAS  PubMed  Google Scholar 

  203. Nedergaard M (1987) Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79–85

    CAS  PubMed  Google Scholar 

  204. Demchuk AM, Morgenstern LB, Krieger DW, Linda Chi T, Hu W, Wein TH et al (1999) Serum glucose level and diabetes predict tissue plasminogen activator-related intracerebral hemorrhage in acute ischemic stroke. Stroke 30:34–39

    CAS  PubMed  Google Scholar 

  205. Thal SC, Engelhard K, Werner C (2005) New cerebral protection strategies. Curr Opin Anaesthesiol 18:490–495

    PubMed  Google Scholar 

  206. Martini SR, Kent TA (2007) Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab 27:435–451

    CAS  PubMed  Google Scholar 

  207. Lee J, Reding M (2007) Effects of thiazolidinediones on stroke recovery: a case-matched controlled study. Neurochem Res 32:635–638

    CAS  PubMed  Google Scholar 

  208. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet 366:1279–1289

    CAS  PubMed  Google Scholar 

  209. Betteridge DJ, DeFronzo RA, Chilton RJ (2008) Proactive: time for a critical appraisal. Eur Heart J 29:969–983

    PubMed  Google Scholar 

  210. Scheen AJ (2012) Outcomes and lessons from the proactive study. Diabetes Res Clin Pract 98:175–186

    CAS  PubMed  Google Scholar 

  211. Wilcox R, Bousser MG, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S et al (2007) Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from proactive (prospective pioglitazone clinical trial in macrovascular events 04). Stroke 38:865–873

    CAS  PubMed  Google Scholar 

  212. Wilcox R, Kupfer S, Erdmann E (2008) Effects of pioglitazone on major adverse cardiovascular events in high-risk patients with type 2 diabetes: results from prospective pioglitazone clinical trial in macro vascular events (proactive 10). Am Heart J 155:712–717

    CAS  PubMed  Google Scholar 

  213. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    CAS  PubMed  Google Scholar 

  214. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C et al (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly medicare patients treated with rosiglitazone or pioglitazone. JAMA 304:411–418

    CAS  PubMed  Google Scholar 

  215. Charbonnel B, Dormandy J, Erdmann E, Massi-Benedetti M, Skene A (2004) The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care 27:1647–1653

    PubMed  Google Scholar 

  216. Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N (2008) Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab 10:1221–1238

    CAS  PubMed  Google Scholar 

  217. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A et al (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the periscope randomized controlled trial. JAMA 299:1561–1573

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Aronowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, X., Aronowski, J. (2014). The Role of PPARγ in Stroke. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics