Low-Power 60-GHz CMOS Radios for Miniature Wireless Sensor Network Applications

  • Kuo-Ken Huang
  • David D. Wentzloff


This chapter discusses several design considerations for low-power 60-GHz complementary metal-oxide semiconductor (CMOS) radios for wireless sensor network applications at the cubic-mm scale. A background study is provided first, followed by a discussion of challenges to provide a practical scope of the hardware design for the readers. Finally, a compact 60-GHz CMOS transmitter with on-chip frequency-locked loop is presented as an example. This transmitter utilizes the on-chip patch antenna as both a radiator and a frequency reference. This eliminates the bulky off-chip crystal, is FCC compliant, and ensures the node transmits at the antenna’s peak efficiency point, making this a cost-effective 60-GHz radio for mm-scale sensor nodes.


Wireless sensor networks CMOS Transmitter 60 GHz Low-power Crystal replacement Frequency reference Integrated antenna 


  1. 1.
    G. Bell, Bell’s Law for the birth and death of computer classes. Commun. ACM. 51(1), 86–94 (Jan 2008)CrossRefGoogle Scholar
  2. 2.
    T. Nakagawa et al., 1-cc computer: cross-layer integration with UWB-IR communication and locationing. IEEE J. Solid-State Circuits 43(4), 964–973 (Apr 2008)CrossRefGoogle Scholar
  3. 3.
    J. Bryzek, Emergence of a $Trillion MEMS Sensor Market (SensorsCon, Santa Clara, CA, Mar 2012)Google Scholar
  4. 4.
    I.F. Akyildiz et al., A Survey on sensor networks. IEEE Commun. Mag. pp. 102–114 (Aug 2002)Google Scholar
  5. 5.
    K. Romer, F. Mattern, The design space of wireless sensor networks. IEEE Wireless Commun. 11(6), 54–61 (Dec 2004)CrossRefGoogle Scholar
  6. 6.
    D. Puccinelli, M. Haenggi, Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circ. Syst. Mag. 5(3), 19–31 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor networks survey. J. Comput. 52(12), 2292–2330 (Apr 2008)Google Scholar
  8. 8.
    P. Corke et al., Environmental wireless sensor networks. Proc. IEEE 98(11), 1903–1917 (Nov 2010)CrossRefGoogle Scholar
  9. 9.
    K.-K. Huang, D.D. Wentzloff, A 60 GHz antenna-referenced frequency-locked loop in 0.13μm CMOS for wireless sensor networks. IEEE J. Solid-State Circuits 46(12), 2956–2965 (Dec 2011)CrossRefGoogle Scholar
  10. 10.
    G. Chen et al., Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. ISSCC Dig. Tech. Papers pp. 288–289 (Feb 2010)Google Scholar
  11. 11.
    Cymbet Corp., EnerChip smart solid state batteries. Accessed 6 Feb 2012
  12. 12.
    S.D.I. Samsung, Prismatic rechargeable battery. Accessed 6 Feb 2012
  13. 13.
    Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 100(1–2), 101–106 (Nov 2001)CrossRefGoogle Scholar
  14. 14.
    A.H. Zimmermann, M.V. Quinzio, Tech. Rep. TR-2010(8550)-5. Performance of SONY 18650-HC Lithium-Ion Cells for Various Cycling Rates (Aerospace Corp., El Segundo, CA, Jan 2010)Google Scholar
  15. 15.
    S. Hossain et al., Lithium-ion cells for aerospace applications. Proc. 32nd Intersociety Energy Conversion Eng. Conf. 1, 35–38 (Aug 1997)Google Scholar
  16. 16.
    CGR18650D: cylindrical model. Panasonic Corp., Product Spec., CGR18650D (Jun 2005)Google Scholar
  17. 17.
    Panasonic batteries energy catalog. Panasonic Corp., Rolling Meadows, IL, Product Spec., PIC-PanBat-FY11-PanaEnergyCatalog (2011)Google Scholar
  18. 18.
    S. Hanson, M. Seok, Y.-S. Lin, Z. Foo, D. Kim, Y. Lee, N. Liu, D. Sylvester, D. Blaauw, A low-voltage processor for sensing applications with picowatt standby mode. IEEE J. Solid-State Circuits 44(4), 1145–1155 (Apr 2009)CrossRefGoogle Scholar
  19. 19.
    H.-J. Lee, A.M. Kerns, S. Hyvonen, I.A. Young, A scalable Sub-1.2 mW 300 MHz-to-1.5 GHz host-clock PLL for system-on-chip in 32 nm CMOS. ISSCC Dig. Tech. Papers pp. 96–97 (Feb 2011)Google Scholar
  20. 20.
    K. Sundaresan, G.K. Ho, S. Pourkamali, F. Ayazi, Electronically temperature compensated silicon bulk acoustic resonator reference oscillators. IEEE J. Solid-State Circuits 42(6), 1425–1434 (June 2007)CrossRefGoogle Scholar
  21. 21.
    Temperature compensated crystal oscillators (TCXO). Vectron Corp., Product Spec., VT820 Series (2009)Google Scholar
  22. 22.
    Standard frequency high performance MEMs VCTCXO. SiTime, Product Spec., SiT5000 (2012)Google Scholar
  23. 23.
    Single-ended output silicon oscillator. Silicon Labs, Product Spec., Si500S (2011)Google Scholar
  24. 24.
    TELOS-B user’s manual. Crossbow Technology Inc., San Jose, CA (2004)Google Scholar
  25. 25.
    C.A. Balanis, Antenna Theory: Analysis and Design, Ch. 4, 2nd edn. (Wiley, New York, 1997)Google Scholar
  26. 26.
    A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri, A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE J. Solid-State Circuits 41(12), 2795–2806 (Dec 2006)Google Scholar
  27. 27.
    T. Yao, L. Tchoketch-Kebir, O. Yuryevich, M.Q. Gordon, S.P. Voinigescu, 65 GHz doppler sensor with on-chip antenna in 0.18 µm SiGe BiCMOS. IEEE MTT-S Int. Microwave Symp. Dig. pp. 1493–1496 (2006)Google Scholar
  28. 28.
    C. Wang, Y. Cho, C. Lin, H. Wang, C. Chen, D. Niu, J. Yeh, C. Lee, J. Chern, A 60 GHz transmitter with integrated antenna in 0.18 µm SiGe BiCMOS technology. ISSCC Dig. Tech. Papers pp. 186–187 (2006)Google Scholar
  29. 29.
    C.-M. Hung, D. Bravo, T.O. Dickson, G. Xiaoling, L. Ran, N. Trichy, J. Caserta, W.R. Bomstad, J. Branch, Y. Dong-Jun, J. Bohorquez, E. Seok, G. Li, A. Sugavanam, J.J. Lin, C. Jie, J.E. Brewer, On-chip antennas in silicon ICs and their application. IEEE Trans. Electron Devices 52(7), 1312–1323 (July 2005)Google Scholar
  30. 30.
    Federal Communications Commission, FCC part 15, sec. 15Google Scholar
  31. 31.
    C.H. Doan, S. Emami, D.A. Sobel, A.M. Niknejad, R.W. Broadersen, Design considerations for 60 GHz radios. lEEE Comm. Mag. pp. 132–140 (Dec 2004)Google Scholar
  32. 32.
    K.-K. Huang, D.D. Wentzloff, 60 GHz on-chip patch antenna integration in a 0.13-um CMOS technology. IEEE International Conference on Ultra-Wideband (ICUWB) (Sep 2010)Google Scholar
  33. 33.
    D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005)Google Scholar
  34. 34.
    M. Pelgrom, A. Duinmaijer, A. Welbers, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24, 1433–1440 (Oct 1989)CrossRefGoogle Scholar
  35. 35.
    J. Lee, Y. Huang, Y. Chen, H. Lu, C. Chang, A low-power fully integrated 60 GHz transceiver system with OOK modulation and on-board antenna assembly. ISSCC Dig. Tech. Papers pp. 315–316 (Feb 2009)Google Scholar
  36. 36.
    Y. Lee, G. Chen, S. Hanson, D. Sylvester, D. Blaauw, Ultra-low power circuit techniques for a new class of sub-mm3 sensor nodes. IEEE CICC 2010 (Nov 2010)Google Scholar
  37. 37.
    J. Lee, S. Cho, 10 MHz 80µW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 µm CMOS. Symposium on VLSI Circuits pp. 226–227 (Jun 2009)Google Scholar
  38. 38.
    J. He, Y.P. Zhang, Design of SPST/SPDT switches in 65 nm CMOS for 60-GHz applications. IEEE Asia Pacific Microwave Conf. pp. 1–4 (Dec 2008)Google Scholar
  39. 39.
    S.-F. Chao, H. Wang, C.-Y. Su, J.G.J. Chern, A 50–94 GHz CMOS SPDT switch using traveling-wave concept. IEEE Microwave Wireless Compon. Lett. 17(2), 130–132 (Feb 2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations