Skip to main content

Incorporation of Genetic Technologies Associated with Applied Reproductive Technologies to Enhance World Food Production

  • Chapter
  • First Online:
Current and Future Reproductive Technologies and World Food Production

Abstract

Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792–796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399–412, 2009; Anim Genet 43:442–446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EG, He W, Yadav-Shah M, Sherman SL (2004) A study of the distributional characteristics of FMR1 transcript levels in 238 individuals. Hum Genet 114:439–447

    PubMed  CAS  Google Scholar 

  • Alvarez P, Spicer LJ, Chase CC Jr, Payton ME, Hamilton TD, Stewart RE, Hammond AC, Olson TA, Wettemann RP (2000) Ovarian and endocrine characteristics during an estrous cycle in Angus, Brahman, and Senepol cows in a subtropical environment. J Anim Sci 78:1291–1302

    PubMed  CAS  Google Scholar 

  • Arigami T, Uenosono Y, Ishigami S, Hagihara T, Haraguchi N, Matsushita D, Yanagita S, Nakajo A, Okumura H, Hokita S, Natsugoe S (2012) Expression of stanniocalcin 1 as a potential biomarker of gastric cancer. Oncology 83:158–164

    PubMed  CAS  Google Scholar 

  • Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A (1996) Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol 10:903–918

    PubMed  CAS  Google Scholar 

  • Bishop SC (2012) Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal 6:741–747

    PubMed  CAS  Google Scholar 

  • Bonczek RR, Young CW, Wheaton JE, Miller KP (1988) Responses of somatotropin, insulin, prolactin, and thyroxine to selection for milk yield in Holsteins1,2. J Dairy Sci 71:2470–2479

    CAS  Google Scholar 

  • Bretherick KL, Fluker MR, Robinson WP (2005) FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum Genet 117:376–382

    PubMed  CAS  Google Scholar 

  • Britt JH, Aberle ED, Esbenshade KL, Males JR (2008) Animal science departments of the future. J Anim Sci 86:3235–3244

    PubMed  CAS  Google Scholar 

  • Brooks KR, Lusk JL (2011) U.S. consumers attitudes toward farm animal cloning. Appetite 57:483–492

    PubMed  Google Scholar 

  • Butler WR (1998) Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J Dairy Sci 81:2533–2539

    PubMed  CAS  Google Scholar 

  • Cammack KM, Thomas MG, Enns RM (2009) Review: reproductive traits and their heritabilities in beef cattle. Prof Anim Sci 25:517–528

    Google Scholar 

  • Campbell BK, Clinton M, Webb R (2012) The role of anti-Müllerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology 153:4533–4543

    Google Scholar 

  • Casas E, Snowder GD (2008) A putative quantitative trait locus on chromosome 20 associated with bovine pathogenic disease incidence. J Anim Sci 86:2455–2460

    PubMed  CAS  Google Scholar 

  • Cassady JP, Johnson RK, Ford JJ (2000) Comparison of plasma FSH concentration in boars and gilts from lines selected for ovulation rate and embryonal survival, and litter size and estimation of (co)variance components for FSH and ovulation rate. J Anim Sci 78:1430–1435

    PubMed  CAS  Google Scholar 

  • Chase CC Jr, Kirby CJ, Hammond AC, Olson TA, Lucy MC (1998) Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J Anim Sci 76:212–219

    PubMed  CAS  Google Scholar 

  • Cohick WS, Armstrong JD, Whitacre MD, Lucy MC, Harvey RW, Campbell RM (1996) Ovarian expression of insulin-like growth factor-I (IGF-I), IGF binding proteins, and growth hormone (GH) receptor in heifers actively immunized against GH-releasing factor. Endocrinology 137:1670–1677

    PubMed  CAS  Google Scholar 

  • Collis E, Fortes MR, Zhang Y, Tier B, Schutt K, Barendse W, Hawken R (2012) Genetic variants affecting meat and milk production traits appear to have effects on reproduction traits in cattle. Anim Genet 43:442–446

    PubMed  CAS  Google Scholar 

  • Cordts EB, Christofolini DM, Dos Santos AA, Bianco B, Barbosa CP (2011) Genetic aspects of premature ovarian failure: a literature review. Arch Gynecol Obstet 283:635–643

    PubMed  Google Scholar 

  • Cushman RA, DeSouza JC, Hedgpeth VS, Britt JH (1999) Superovulatory response of one ovary is related to the micro- and macroscopic population of follicles in the contralateral ovary of the cow. Biol Reprod 60:349–354

    PubMed  CAS  Google Scholar 

  • Cushman RA, Wahl CM, Fortune JE (2002) Bovine ovarian cortical pieces grafted to chick embryonic membranes: a model for studies on the activation of primordial follicles. Hum Reprod 17:48–54

    PubMed  CAS  Google Scholar 

  • Cushman RA, Allan MF, Jones SA, Rupp GP, Echternkamp SE (2007a) Localization of Period 1 mRNA in the ruminant oocyte and investigations of its role in ovarian function. Anim Reprod Sci 99:93–105

    PubMed  CAS  Google Scholar 

  • Cushman RA, Allan MF, Kuehn LA (2007b) Achievements of research in reproduction sciences. In: Rosati A, Tewolde A, Mosconi C (eds) Animal production and animal science worldwide. WAAP book of the year 2007. Wageningen Academic, Wageningen, pp 59–66

    Google Scholar 

  • Cushman RA, Allan MF, Kuehn LA (2008) Characterization of biological types of cattle: indicator traits of fertility in beef cows. Rev Bras Zootec 37:116–121

    Google Scholar 

  • Cushman RA, Allan MF, Kuehn LA, Snelling WM, Cupp AS, Freetly HC (2009) Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: Investigation of influence of stage of the estrous cycle, age, and birth weight. J Anim Sci 87:1971–1980

    PubMed  CAS  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    PubMed  CAS  Google Scholar 

  • Doyle SP, Golden BL, Green RD, Brinks JS (2000) Additive genetic parameter estimates for heifer pregnancy and subsequent reproduction in Angus females. J Anim Sci 78:2091–2098

    PubMed  CAS  Google Scholar 

  • Drake DJ, Weber KL, Van Eenennam AL (2011) What are herd bulls accomplishing in multiple sire breeding pastures? In: Proceedings, applied reproductive strategies in beef cattle, p 305–319, Joplin, MO, 31 Aug–1 Sept

    Google Scholar 

  • Durlinger ALL, Kramer P, Karels B, de Jong FH, Uilenbroek JTJ, Grootegoed JA, Themmen APN (1999) Control of primordial follicle recruitment by Anti-Müllerian hormone in the mouse ovary. Endocrinology 140:5789–5796

    PubMed  CAS  Google Scholar 

  • Durlinger ALL, Gruijters MJG, Kramer P, Karels B, Ingraham HA, Nachtigal MW, Uilenbroek JTJ, Grootegoed JA, Themmen APN (2002a) Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076–1084

    PubMed  CAS  Google Scholar 

  • Durlinger ALL, Visser JA, Themmen APN (2002b) Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124:601–609

    PubMed  CAS  Google Scholar 

  • Echternkamp SE, Gregory KE, Dickerson GE, Cundiff LV, Koch RM, Van Vleck LD (1990a) Twinning in cattle: II. Genetic and environmental effects on ovulation rate in puberal heifers and postpartum cows and the effects of ovulation rate on embryonic survival. J Anim Sci 68:1877–1888

    PubMed  CAS  Google Scholar 

  • Echternkamp SE, Spicer LJ, Gregory KE, Canning SF, Hammond JM (1990b) Concentrations of insulin-like growth factor-I in blood and ovarian follicular fluid of cattle selected for twins. Biol Reprod 43:8–14

    PubMed  CAS  Google Scholar 

  • Echternkamp SE, Roberts AJ, Lunstra DD, Wise T, Spicer LJ (2004) Ovarian follicular development in cattle selected for twin ovulations and births. J Anim Sci 82:459–471

    Google Scholar 

  • Elvin JA, Matzuk MM (1998) Mouse models of ovarian failure. Rev Reprod 3:183–195

    PubMed  CAS  Google Scholar 

  • Elvin JA, Yan C, Matzuk MM (2000) Oocyte-expressed TGF-b superfamily members in female fertility. Mol Cell Endocrinol 159:1–5

    PubMed  CAS  Google Scholar 

  • Fortes MR, Reverter A, Zhang Y, Collis E, Nagaraj SH, Jonsson NN, Prayaga KC, Barris W, Hawken RJ (2010) Association weight matrix for the genetic dissection of puberty in beef cattle. Proc Natl Acad Sci U S A 107:13642–13647

    PubMed  CAS  Google Scholar 

  • Foxcroft G (2012) Reproduction in farm animals in an era of rapid genetic change: will genetic change outpace our knowledge of physiology? Reprod Domest Anim 47(Suppl 4):313–319

    PubMed  Google Scholar 

  • Funston RN, Summers AF, Roberts AJ (2012) Alpharma Beef Cattle Nutrition Symposium: implications of nutritional management for beef cow-calf systems. J Anim Sci 90:2301–2307

    PubMed  CAS  Google Scholar 

  • Galloway SM, McNatty KP, Cambridge LM, Laitinen MPE, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW, Beattie AE, Davis GH, Ritvos O (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283

    PubMed  CAS  Google Scholar 

  • Gargantini G, Cundiff LV, Lunstra DD, van Vleck LD (2005) Genetic relationships between male and female reproductive traits in beef cattle. Prof Anim Sci 21:195–199

    Google Scholar 

  • Ghanem ME, Nishibori M (2009) Genetic description of factor XI deficiency in holstein semen in Western Japan. Reprod Domest Anim 44:792–796

    PubMed  CAS  Google Scholar 

  • Gigli I, Cushman RA, Wahl CM, Fortune JE (2005) Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol Reprod Dev 71:480–488

    PubMed  CAS  Google Scholar 

  • Gleicher N, Weghofer A, Barad DH (2009) A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Mullerian hormone. Fertil Steril 91:1700–1706

    PubMed  CAS  Google Scholar 

  • Gleicher N, Weghofer A, Kim A, Barad DH (2012) The impact in older women of ovarian FMR1 genotypes and sub-genotypes on ovarian reserve. PLoS One 7:e33638

    PubMed  CAS  Google Scholar 

  • Greb RR, Behre HM, Simoni M (2005a) Pharmacogenetics in ovarian stimulation—current concepts and future options. Reprod Biomed Online 11:589–600

    PubMed  CAS  Google Scholar 

  • Greb RR, Grieshaber K, Gromoll J, Sonntag B, Nieschlag E, Kiesel L, Simoni M (2005b) A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab 90:4866–4872

    PubMed  CAS  Google Scholar 

  • Hammond AC, Elsasser TH, Olson TA (1991) Endocrine characteristics of a miniature condition in Brahman cattle: circulating concentrations of some growth-related hormones. Proc Soc Exp Biol Med 197:450–457

    PubMed  CAS  Google Scholar 

  • Han H, Austin KJ, Rempel LA, Hansen TR (2006) Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J Endocrinol 191:505–512

    PubMed  CAS  Google Scholar 

  • He PJ, Hirata M, Yamauchi N, Hattori MA (2007) Up-regulation of Per1 expression by estradiol and progesterone in the rat uterus. J Endocrinol 194:511–519

    PubMed  CAS  Google Scholar 

  • Hetzel DJ, Mackinnon MJ, Dixon R, Entwistle KW (1989) Fertility in a tropical beef herd divergently selected for pregnancy rate. Anim Prod 48:73–81

    Google Scholar 

  • Holm DE, Thompson PN, Irons PC (2009) The value of reproductive tract scoring as a predictor of fertility and production outcomes in beef heifers. J Anim Sci 87:1934–1940

    PubMed  CAS  Google Scholar 

  • Hu ZL, Ramos AM, Humphray SJ, Rogers J, Reecy JM, Rothschild MF (2011) Use of genome sequence information for meat quality trait QTL mining for causal genes and mutations on pig chromosome 17. Front Genet 2:43

    PubMed  Google Scholar 

  • Huang W, Kirkpatrick BW, Rosa GJ, Khatib H (2010) A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Anim Genet 41:570–578

    PubMed  CAS  Google Scholar 

  • Ireland JL, Scheetz D, Jimenez-Krassel F, Themmen AP, Ward F, Lonergan P, Smith GW, Perez GI, Evans AC, Ireland JJ (2008) Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol Reprod 79:1219–1225

    PubMed  CAS  Google Scholar 

  • Ireland JJ, Zielak-Steciwko AE, Jimenez-Krassel F, Folger J, Bettegowda A, Scheetz D, Walsh S, Mossa F, Knight PG, Smith GW, Lonergan P, Evans AC (2009) Variation in the ovarian reserve is linked to alterations in intrafollicular estradiol production and ovarian biomarkers of follicular differentiation and oocyte quality in cattle. Biol Reprod 80:954–964

    PubMed  CAS  Google Scholar 

  • Ireland JJ, Smith GW, Scheetz D, Jimenez-Krassel F, Folger JK, Ireland JL, Mossa F, Lonergan P, Evans AC (2011) Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Mullerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod Fertil Dev 23:1–14

    PubMed  CAS  Google Scholar 

  • Jasti M, Warren BD, McGinnis LK, Kinsey WH, Petroff BK, Petroff MG (2012) The autoimmune regulator (Aire) prevents premature reproductive senescence in female mice. Biol Reprod 86:1–9

    Google Scholar 

  • Jimenez-Krassel F, Folger JK, Ireland JL, Smith GW, Hou X, Davis JS, Lonergan P, Evans AC, Ireland JJ (2009) Evidence that high variation in ovarian reserves of healthy young adults has a negative impact on the corpus luteum and endometrium during estrous cycles in cattle. Biol Reprod 80:1272–1281

    PubMed  CAS  Google Scholar 

  • Johnson RK, Eckardt GR, Rathje TA, Drudik DK (1994) Ten generations of selection for predicted weight of testes in swine: direct response and correlated response in body weight, backfat, age at puberty, and ovulation rate. J Anim Sci 72:1978–1988

    PubMed  CAS  Google Scholar 

  • Johnston DJ, Barwick SA, Corbet NJ, Fordyce G, Holroyd RG, Williams PJ, Burrow HM (2009) Genetics of heifer puberty in two tropical beef genotypes in northern Australia and associations with heifer- and steer-production traits. Anim Prod Sci 49:399–412

    Google Scholar 

  • Kadakia R, Arraztoa JA, Bondy C, Zhou J (2001) Granulosa cell proliferation is impaired in the Igf1 null ovary. Growth Horm IGF Res 11:220–224

    PubMed  CAS  Google Scholar 

  • Kappes SM (1999) Utilization of gene mapping information in livestock animals. Theriogenology 51:135–147

    PubMed  CAS  Google Scholar 

  • Kayser JP, Vallet JL, Cerny RL (2004) Defining parameters for homology-tolerant database searching. J Biomol Tech 15:285–295

    PubMed  CAS  Google Scholar 

  • Kevenaar ME, Themmen APN, Rivadeneira F, Uitterlinden AG, Laven JSE, van Schoor NM, Lips P, Pols HAP, Visser JA (2007) A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum Reprod 22:2382–2388

    PubMed  CAS  Google Scholar 

  • Kevenaar ME, Laven JS, Fong SL, Uitterlinden AG, de Jong FH, Themmen AP, Visser JA (2008) A functional anti-Mullerian hormone gene polymorphism is associated with follicle number and androgen levels in polycystic ovary syndrome patients. J Clin Endocrinol Metab 93:1310–1316

    PubMed  CAS  Google Scholar 

  • Knauer MT, Cassady JP, Newcom DW, See MT (2010) Estimates of variance components for genetic correlations among swine estrus traits. J Anim Sci 88:2913–2919

    PubMed  CAS  Google Scholar 

  • Knauer MT, Cassady JP, Newcom DW, See MT (2011) Phenotypic and genetic correlations between gilt estrus, puberty, growth, composition, and structural conformation traits with first-litter reproductive measures. J Anim Sci 89:935–942

    PubMed  CAS  Google Scholar 

  • Kuehn LA, Nonneman DJ, Klindt JM, Wise TH (2009) Genetic relationships of body composition, serum leptin, and age at puberty in gilts. J Anim Sci 87:477–483

    PubMed  CAS  Google Scholar 

  • Lamberson WR, Johnson RK, Zimmerman DR, Long TE (1991) Direct responses to selection for increased litter size, decreased age at puberty, or random selection following selection for ovulation rate in swine. J Anim Sci 69:3129–3143

    PubMed  CAS  Google Scholar 

  • Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63:879–884

    PubMed  Google Scholar 

  • Líron JP, Prando A, Ripoli MV, Rogberg-Munoz A, Posik DM, Baldo A, Peral-Garcia P, Giovambattista G (2011) Characterization and validation of bovine gonadotropin releasing hormone receptor (GNRHR) polymorphisms. Res Vet Sci 91:391–396

    PubMed  Google Scholar 

  • Lucy MC, Weber WJ, Baumgard LH, Seguin BS, Koenigsfeldl AT, Hansen LB, Chester-Jones H, Crooker BA (1998) Reproductive endocrinology of lactating dairy cows selected for increased milk production. J Dairy Sci 81(Suppl 1):246

    Google Scholar 

  • Lunstra DD, Gregory KE, Cundiff LV (1988) Heritability estimates and adjustment factors for the effects of bull age and age of dam on yearling testicular size in breeds of bulls. Theriogenology 30:127–136

    PubMed  CAS  Google Scholar 

  • MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M, Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner MM, Hunt T, Barnes IH, Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN, Xue Y, Romero IG, Wang J, Li Y, Gibbs RA, McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB, Tyler-Smith C (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828

    PubMed  CAS  Google Scholar 

  • Mackinnon MJ, Hetzel DJ, Corbet NJ, Bryan RP, Dixon R (1990) Correlated responses to selection for cow fertility in a tropical beef breed. Anim Prod 50:417–424

    Google Scholar 

  • MacNeil MD, Geary TW, Perry GA, Roberts AJ, Alexander LJ (2006) Genetic partitioning of variation in ovulatory follicle size and probability of pregnancy in beef cattle. J Anim Sci 84:1646–1650

    PubMed  CAS  Google Scholar 

  • Martin LC, Brinks JS, Bourdon RM, Cundiff LV (1992) Genetic effects on beef heifer puberty and subsequent reproduction. J Anim Sci 70:4006–4017

    PubMed  CAS  Google Scholar 

  • Martin JL, Vonnahme KA, Adams DC, Lardy GP, Funston RN (2007) Effects of dam nutrition on growth and reproductive performance of heifer calves. J Anim Sci 85:841–847

    PubMed  CAS  Google Scholar 

  • Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4:e5350

    PubMed  Google Scholar 

  • Matzuk MM, Lamb DJ (2002) Genetic dissection of mammalian fertility pathways. Nat Cell Biol 4(Suppl):s41–s49

    PubMed  Google Scholar 

  • McCormack BL, Chase CC Jr, Olson TA, Elsasser TH, Hammond AC, Welsh TH Jr, Jiang H, Randel RD, Okamura CA, Lucy MC (2009) A miniature condition in Brahman cattle is associated with a single nucleotide mutation within the growth hormone gene. Domest Anim Endocrinol 37:104–111

    PubMed  CAS  Google Scholar 

  • McDaneld TG, Kuehn LA, Thomas MG, Snelling WM, Sonstegard TS, Matukumalli LK, Smith TP, Pollak EJ, Keele JW (2012) Y are you not pregnant: identification of Y chromosome segments in female cattle with decreased reproductive efficiency. J Anim Sci 90:2142–2151

    PubMed  CAS  Google Scholar 

  • McNatty KP, Galloway SM, Wilson T, Smith P, Hudson NL, O’Connell A, Bibby AH, Heath DA, Davis GH, Hanrahan JP, Juengel JL (2005) Physiological effects of major genes affecting ovulation rate in sheep. Genet Sel Evol 37(Suppl 1):S25–S38

    PubMed  CAS  Google Scholar 

  • Meyers SN, McDaneld TG, Swist SL, Marron BM, Steffen DJ, O’Toole D, O’Connell JR, Beever JE, Sonstegard TS, Smith TP (2010) A deletion mutation in bovine SLC4A2 is associated with osteopetrosis in Red Angus cattle. BMC Genomics 11:337

    PubMed  Google Scholar 

  • Mialon MM, Renand G, Krauss D, Menissier F (2000) Genetic variability of the length of postpartum anoestrus in Charolais cows and its relationship with age at puberty. Genet Sel Evol 32:403–414

    PubMed  CAS  Google Scholar 

  • Mialon MM, Renand G, Krauss D, Menissier F (2001) Genetic relationship between cyclic ovarian activity in heifers and cows and beef traits in males. Genet Sel Evol 33:273–287

    PubMed  CAS  Google Scholar 

  • Minick Bormann J, Wilson DE (2010) Calving day and age at first calving in Angus heifers. J Anim Sci 88:1947–1956

    PubMed  CAS  Google Scholar 

  • Morris CA, Wilson JA, Bennett GL, Cullen NG, Hickey SM, Hunter JC (2000) Genetic parameters for growth, puberty, and beef cow reproductive traits in a puberty selection line. New Zeal J Agr Res 43:83–91

    Google Scholar 

  • Mossa F, Walsh SW, Butler ST, Berry DP, Carter F, Lonergan P, Smith GW, Ireland JJ, Evans AC (2012) Low numbers of ovarian follicles ≥3 mm in diameter are associated with low fertility in dairy cows. J Dairy Sci 95:2355–2361

    PubMed  CAS  Google Scholar 

  • Nagalakshmi U, Waern K, Snyder M (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol Chapter 4:Unit 4.11.1–13

    Google Scholar 

  • Pilorz V, Steinlechner S (2008) Low reproductive success in Per1 and Per2 mutant mouse females due to accelerated ageing. Reproduction 135:559–568

    PubMed  CAS  Google Scholar 

  • Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4:e6524

    PubMed  Google Scholar 

  • Rico C, Fabre S, Medigue C, di Clemente N, Clement F, Bontoux M, Touze JL, Dupont M, Briant E, Remy B, Beckers JF, Monniaux D (2009) Anti-Mullerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol Reprod 80:50–59

    PubMed  CAS  Google Scholar 

  • Rosendo A, Druet T, Gogue J, Bidanel JP (2007a) Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. J Anim Sci 85:356–364

    PubMed  CAS  Google Scholar 

  • Rosendo A, Druet T, Gogue J, Canario L, Bidanel JP (2007b) Correlated responses for litter traits to six generations of selection for ovulation rate or prenatal survival in French Large White pigs. J Anim Sci 85:1615–1624

    PubMed  CAS  Google Scholar 

  • Ruiz-Flores A, Johnson RK (2001) Direct and correlated responses to two-stage selection for ovulation rate and number of fully formed pigs at birth in swine. J Anim Sci 79:2286–2297

    PubMed  CAS  Google Scholar 

  • Saito H, Sasaki Y, Koketsu Y (2011) Associations between age of gilts at first mating and lifetime performance or culling risk in commercial herds. J Vet Med Sci 73:555–559

    PubMed  Google Scholar 

  • Schneider JF, Rempel LA, Rohrer GA, Brown-Brandl TM (2011) Genetic parameter estimates among scale activity score and farrowing disposition with reproductive traits in swine. J Anim Sci 89:3514–3521

    PubMed  CAS  Google Scholar 

  • Schneider JF, Rempel LA, Rohrer GA (2012) GWAS of swine farrowing traits Part I: genetic and genomic parameter estimates. J Anim Sci 90(10):3353–3359

    PubMed  CAS  Google Scholar 

  • Schoppee PD, Armstrong JD, Harvey RW, Whitacre MD, Felix A, Campbell RM (1996) Immunization against growth hormone releasing factor or chronic feed restriction initiated at 3.5 months of age reduces ovarian response to pulsatile administration of gonadotropin-releasing hormone at 6 months of age and delays onset of puberty in heifers. Biol Reprod 55:87–98

    PubMed  CAS  Google Scholar 

  • Shimizu T, Hirai Y, Murayama C, Miyamoto A, Miyazaki H, Miyazaki K (2011) Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells. Biochem Biophys Res Commun 412:132–135

    PubMed  CAS  Google Scholar 

  • Shimizu T, Hirai Y, Murayama C, Miyamoto A, Miyazaki H, Miyazaki K (2012) Expressions of the circadian genes Per2, Bmal1, Clock and Cry1 during the different stages of follicular development and their regulation by FSH in bovine granulosa cells from small follicles. Livest Sci 145:292–297

    Google Scholar 

  • Silva-Santos KC, Santos GM, Siloto LS, Hertel MF, Andrade ER, Rubin MI, Sturion L, Melo-Sterza FA, Seneda MM (2011) Estimate of the population of preantral follicles in the ovaries of Bos taurus indicus and Bos taurus taurus cattle. Theriogenology 76:1051–1057

    PubMed  CAS  Google Scholar 

  • Singh J, Dominguez M, Jaiswal R, Adams GP (2004) A simple ultrasound test to predict the superstimulatory response in cattle. Theriogenology 62:227–243

    PubMed  Google Scholar 

  • Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M (2009) Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 21:499–510

    PubMed  CAS  Google Scholar 

  • Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE (2008) Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol Reprod Dev 75:1457–1472

    PubMed  CAS  Google Scholar 

  • Snelling WM, Cushman RA, Fortes MR, Reverter A, Bennett GL, Keele JW, Kuehn LA, McDaneld TG, Thallman RM, Thomas MG (2012) Physiology and Endocrinology Symposium: how single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females. J Anim Sci 90:1152–1165

    PubMed  CAS  Google Scholar 

  • Soares R, Franco C, Pires E, Ventosa M, Palhinhas R, Koci K, Martinho de Almeida A, Varela Coelho A (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75:4190–4206

    PubMed  CAS  Google Scholar 

  • Starbuck-Clemmer MJ, Hernandez-Fonseca H, Ahmad N, Seidel G, Inskeep EK (2007) Association of fertility with numbers of antral follicles within a follicular wave during the oestrous cycle in beef cattle. Reprod Domest Anim 42:337–342

    PubMed  CAS  Google Scholar 

  • Sterning M, Rydhmer L, Eliasson-Selling L (1998) Relationships between age at puberty and interval from weaning to estrus and between estrus signs at puberty and after the first weaning in pigs. J Anim Sci 76:353–359

    PubMed  CAS  Google Scholar 

  • Sugimoto M, Sasaki S, Watanabe T, Nishimura S, Ideta A, Yamazaki M, Matsuda K, Yuzaki M, Sakimura K, Aoyagi Y, Sugimoto Y (2010) Ionotropic glutamate receptor AMPA 1 is associated with ovulation rate. PLoS One 5:e13817

    PubMed  Google Scholar 

  • Sullivan TM, Micke GC, Greer RM, Irving-Rodgers HF, Rodgers RJ, Perry VE (2009) Dietary manipulation of Bos indicus x heifers during gestation affects the reproductive development of their heifer calves. Reprod Fertil Dev 21:773–784

    PubMed  CAS  Google Scholar 

  • Tessaro I, Luciano AM, Franciosi F, Lodde V, Corbani D, Modina SC (2011) The endothelial nitric oxide synthase/nitric oxide system is involved in the defective quality of bovine oocytes from low mid-antral follicle count ovaries. J Anim Sci 89:2389–2396

    PubMed  CAS  Google Scholar 

  • Thallman RM, Cundiff LV, Gregory KE, Koch RM (1999) Germplasm evaluation in beef cattle—Cycle IV: postweaning growth and puberty of heifers. J Anim Sci 77:2651–2659

    PubMed  CAS  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409

    PubMed  CAS  Google Scholar 

  • White SN, Casas E, Allan MF, Keele JW, Snelling WM, Wheeler TL, Shackelford SD, Koohmaraie M, Smith TP (2007) Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth. J Anim Sci 85:1–10

    PubMed  CAS  Google Scholar 

  • Wiedmann RT, Smith TP, Nonneman DJ (2008) SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genet 9:81

    PubMed  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    PubMed  CAS  Google Scholar 

  • Wilson T, Wu X-Y, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O’Connell AR, McNatty KP, Montgomery GW (2001) Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenic protein 1B receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 64:1225–1235

    PubMed  CAS  Google Scholar 

  • Womack JE (2005) Advances in livestock genomics: opening the barn door. Genome Res 15:1699–1705

    PubMed  CAS  Google Scholar 

  • Yang WC, Li SJ, Tang KQ, Hua GH, Zhang CY, Yu JN, Han L, Yang LG (2010) Polymorphisms in the 5′ upstream region of the FSH receptor gene, and their association with superovulation traits in Chinese Holstein cows. Anim Reprod Sci 119:172–177

    PubMed  CAS  Google Scholar 

  • Yilmaz A, Davis ME, Simmen RCM (2006) Analysis of female reproductive traits in Angus beef cattle divergently selected for blood serum insulin-like growth factor I concentration. Theriogenology 65:1180–1190

    PubMed  CAS  Google Scholar 

  • Zhang S, Knight TJ, Reecy JM, Wheeler TL, Shackelford SD, Cundiff LV, Beitz DC (2010) Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition. Anim Genet 41:417–420

    PubMed  CAS  Google Scholar 

  • Zhou J, Kumar TR, Matzuk MM, Bondy C (1997) Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol Endocrinol 11:1924–1933

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Cushman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cushman, R.A., McDaneld, T.G., Kuehn, L.A., Snelling, W.M., Nonneman, D. (2014). Incorporation of Genetic Technologies Associated with Applied Reproductive Technologies to Enhance World Food Production. In: Lamb, G., DiLorenzo, N. (eds) Current and Future Reproductive Technologies and World Food Production. Advances in Experimental Medicine and Biology, vol 752. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8887-3_4

Download citation

Publish with us

Policies and ethics