Leakage Reduction

  • Baker Mohammad
Part of the Analog Circuits and Signal Processing book series (ACSP, volume 116)


The use of batteries in hardware targeted for handheld and cell phone applications necessitates that the product meets stringent energy requirements. Leakage current (i.e., the current flowing through the device during its “off” state) has increased drastically with technology scaling [63, 64]. Leakage minimization in standby mode is important for chips in general, but is critical for handhelds and mobile phones because such products have long idle times and limited energy to spare. The leakage power often determines the standby time a product can last before its battery is drained. Equations 6.1 and 6.2 relate the battery operation time to the different types of power in the system. Psleep is wasted energy due to leakage and it is desired to make it close to zero. Pmode is the power wasted due to switching from one mode (active, sleep) into another mode.
$$ {T}_{battery}\approx \frac{E_{battery}}{P_{avg}} $$
$$ {P}_{avg}={P}_{always- on}+{P}_{sleep}+{P}_{mode}+\frac{E_{active}}{T} $$
$$ {T}_{battery}\ lifetime\ of\ the\ battery\kern1em \mathrm{and}\kern1em {P}_{avg}\ average\ power\ consumed. $$
$$ {E}_{battery}\ energy\ that\ can\ be\ delivered\ by\ the\ battery $$
$$ {E}_{active}\ energy\ consumed\ in\ active\ mode $$


  1. 1.
    Wilkes, M. The memory gap and the future of high performance memories, ACM Computer Architecture News, vol. 29, March 2001, pp. 2–7.Google Scholar
  2. 3.
    Wulf, W.; McKee, S. Hitting the memory wall: Implications of the obvious, ACM Computer Architecture News, March 1995, pp. 20–24.Google Scholar
  3. 4.
    G. Gerosa, S. Curtis, M. D’Addeo, B. J. B. Jiang, B. Kuttanna, F. Merchant, B. Patel, M. Taufique, and H. Samarchi, A Sub-1W to 2W Low-Power IA Processor for Mobile Internet Devices and Ultra-Mobile PCs in 45nm Hi-amp;#x039A; Metal Gate CMOS. 2008.Google Scholar
  4. 5.
  5. 19.
  6. 40.
    Wang, Y. et al. A 1.1 GHz 12 µA/Mb-Leakage SRAM in 65 nm ultra-low-power CMOS technology with integrated leakage reduction for mobile applications, Proc. ISSCC; January 2008; pp. 172–179.Google Scholar
  7. 41.
    Mo, R.; Mann, R.; Sun, M.-C.; Eller, M.; Leake, G.; Vietzke, D.; Tilke, A.; Guarin, F.; Fischer, A.; Pompl, T.; Massey, G.; Vayshenker, A.; Tan, W.L.; Ebert, A.; Lin, W.; Gao, W.; Lian, J.; Kim, J.-P.; Wrschka, P.; Yang, J.-H.; Ajmera, A.; Knoefler, R.; Teh, Y.-W.; Jamin, F.; Park, J.E.; Hooper, K.; Griffin, C.; Nguyen, P.; Klee, V.; Ku, V.; Baiocco, C.; Johnson, G.; Tai, L.; Benedict, J.; Scheer, S.; Zhuang, H.; Ramanchandran, V.; Matusiewicz, G.; Lin, Y.-H.; Siew, Y.K.; Zhang, F.; Leong, L.S.; Liew, S.L.; Park, K.C.; Lee, K.-W.; Hong, D.H.; Choi, S.-M.; Kaltalioglu, E.; Kim, S.O.; Naujok, M.; Sherony, M.; Cowley, A.; Thomas, A.; Sudijohno, J.; Schiml, T.; Ku, J.-H.; Yang, I. 65nm CMOS technology for low power applications”, Electron Devices Meeting, IEDM Technical Digest. IEEE International, December 2005 pp. 64–67.
  8. 42.
    L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams, K. W. Guarini, and W. Haensch, Stable SRAM cell design for the 32 nm node and beyond. IEEE, 2005, pp. 128–129.Google Scholar
  9. 53.
    Zhang, K.; Bhattacharya, U.; Zhanping Chen; Hamzaoglu, F.; Murray, D.; Vallepalli, N.; Yih Wang; Bo Zheng; Bohr, M. A 3-GHz 70-Mb SRAM in 65-nm CMOS Technology With Integrated Column-Based Dynamic Power Supply, IEEE J. Solid-State Circuits, volume 41, April 2006, pp. 146–152.Google Scholar
  10. 54.
    K Zhang, U Bhattacharya, Z Chen, F Hamzaoglu, D Murray, N Vallepalli, A 1.1GHz 12µA/Mb-Leakage RAM Design in 65nm Ultra-Low-Power CMOS with Integrated Leakage Reduction for Mobile Applications, in IEEE ISSCC, February 2007, pp. 324–327Google Scholar
  11. 60.
    Frank, A. Power-constrained CMOS scaling limits, IBM Journal of Research and Development, volume 46, December 2001, pp. 235–244.CrossRefGoogle Scholar
  12. 61.
    K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Prolog to: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer cmos circuits, vol. 91, no. 2. IEEE, 2003, pp. 305–327.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Baker Mohammad
    • 1
  1. 1.Khalifa University of Science, Technology and ResearchAbu DhabiUnited Arab Emirates

Personalised recommendations