Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 116))

  • 1818 Accesses

Abstract

Embedded memories are becoming an increasingly important part of processor and system-on-chip (SOC) because of their positive impact on performance. However, embedded memories can negatively impact area, power, timing, yield, and design time. The ever-increasing gap between processor frequencies and DRAM access times, popularly referred to as memory wall, has indicated that processors use more and more on-die memory, hence the name “Embedded memory” [1, 2]. In addition, the new paradigm of multi-core systems and multi-functional units on the same die driven by the need for power efficiency, multi-functioning and large data size for high performance also contributes to the increase of embedded memory size [3]. As a result, in many chips the memory arrays make-up more than 80 % of the device and occupy about half of the chip’s area [4]. Figure 1.1 shows an example of the embedded memory size trend of the Intel mobile processor [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkes, M. The memory gap and the future of high performance memories, ACM Computer Architecture News, vol. 29, March 2001, pp. 2–7.

    Google Scholar 

  2. Weste, N. and Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective, Addison-Wesley, 2005.

    Google Scholar 

  3. Wulf, W.; McKee, S. Hitting the memory wall: Implications of the obvious, ACM Computer Architecture News, March 1995, pp. 20–24.

    Google Scholar 

  4. G. Gerosa, S. Curtis, M. D’Addeo, B. J. B. Jiang, B. Kuttanna, F. Merchant, B. Patel, M. Taufique, and H. Samarchi, A Sub-1W to 2W Low-Power IA Processor for Mobile Internet Devices and Ultra-Mobile PCs in 45nm Hi-k metal Gate CMOS. 2008.

    Google Scholar 

  5. http://www.intel.com/pressroom/archive/releases.

  6. Hennessy, J. and Patterson, D. Computer Organization & Design, 3rd ed., Morgan Kaufmann 2005.

    Google Scholar 

  7. Handy, J.; The Cache Memory book; Academic Press; San Diego; CA 1998.

    Google Scholar 

  8. Hidaka, H. Evolution of embedded flash memory technology for MCU, IEEE IC Design & Technology (ICICDT), May 2011; pp. 1–4.

    Google Scholar 

  9. Rabaey, J.; Chandrakasan A.; Nikolic B.; Digital Integrated Circuits (2nd Edition), Jan 2003.

    Google Scholar 

  10. H.-T. Lin, Y.-L. Chuang, and T.-Y. Ho, Pulsed-latch-based clock tree migration for dynamic power reduction. IEEE, 2011, pp. 39–44.

    Google Scholar 

  11. E. Terzioglu, S. S. Yoon, C. Jung, R. Chaba, V. Boynapalli, M. Abu-Rahma, J. Wang, S. Yang, G. Nallapati, A. Thean, C. Chidambaram, M. Han, G. Yeap, and M. Sani, Low power embedded memory design process to system level considerations. IEEE, 2011, pp. 1–4.

    Google Scholar 

  12. Fetzer, ES. et. al, A fully bypass six-issue integer datapath and register file on the intanium-2 microprocessor, IEEE J. Solid State Circuits, volume 37, November 2002, pp.1433–1440.

    Google Scholar 

  13. Arm microprocessors http://infocenter.arm.com/.

  14. Borkar S. et al. Parameter variation and impact on circuits and microarchitecture, in Proc. of DAC, 2003, pp. 338–342.

    Google Scholar 

  15. http://infocenter.arm.com/help/index.jsp.

  16. J. Bhavnagarwala et al. The impact of intrinsic device fluctuations on CMOS SRAM cell stability, IEEE J. Solid-State Circuits, volume 36, April 2001, pp. 658–665.

    Article  Google Scholar 

  17. R. Kapre, K. Shakeri, H. Puchner, J. Tandigan, T. Nigam, K. Jang, M. V. R. Reddy, S. Lakshminarayanan, D. Sajoto, and M. Whately, SRAM Variability and Supply Voltage Scaling Challenges. IEEE, 2007, pp. 782–787.

    Google Scholar 

  18. Warnock, J.; Chan, Y.H.; Harrer, H.; Rude, D.; Puri, R.; Carey, S.; Salem, G.; Mayer, G.; Yiu-Hing Chan; Mayo, M.; Jatkowski, A.; Strevig, G.; Sigal, L.; Datta, A.; Gattiker, A.; Bansal, A.; Malone, D.; Strach, T.; Huajun Wen; Pak-Kin Mak; Chung-Lung Shum; Plass, D.; Webb, C. 5.5GHz system z microprocessor and multi-chip module, Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International

    Google Scholar 

  19. M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog, R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B. O. Eversmann, An 82A/MHz microcontroller with embedded FeRAM for energy-harvesting applications. IEEE, 2011, pp. 334–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohammad, B. (2014). Introduction. In: Embedded Memory Design for Multi-Core and Systems on Chip. Analog Circuits and Signal Processing, vol 116. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8881-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8881-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8880-4

  • Online ISBN: 978-1-4614-8881-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics