Skip to main content

Virtual Surgery in Congenital Heart Disease

Abstract

Teaching, diagnosing, and planning of therapy in patients with complex structural cardiovascular heart disease require profound understanding of the three-dimensional (3D) nature of cardiovascular structures in these patients. To obtain such understanding, modern imaging modalities provide high-resolution two-dimensional (2D), three-dimensional (3D), and sometimes even time-resolved 3D imaging of the cardiovascular anatomy of the chest. When 3D structures need to be understood based on 2D images, a 3D model is a very helpful tool to visualize and to understand the often complex 3D structures. In combination with the availability of virtual models of congenital heart disease (CHD), techniques for computer-based simulation of cardiac interventions have enabled early clinical exploration of the emerging concept of virtual surgery. This chapter serves as an introduction to virtual surgery for patient-specific preoperative planning and teaching of cardiovascular anatomy and interventions for clinicians. The chapter is mainly based on the discussion of a few examples. An overview of the underlying imaging and data-processing techniques is provided.

Keywords

  • Virtual Surgery
  • Congenital Heart Disease (CHD)
  • Patient-specific Preoperative Planning
  • Cardiovascular Anatomy
  • Structural Cardiovascular Disease

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-8875-0_23
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-8875-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 23.1
Fig. 23.2
Fig. 23.3
Fig. 23.4
Fig. 23.5
Fig. 23.6
Fig. 23.7

References

  1. Sorensen TS, Pedersen EM, Hansen OK, Sorensen K. Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging. Cardiol Young. 2003;13:451–60.

    PubMed  Google Scholar 

  2. Sorensen TS, Greil GF, Hansen OK, Mosegaard J. Surgical simulation–a new tool to evaluate surgical incisions in congenital heart disease? Interact Cardiovasc Thorac Surg. 2006;5:536–9.

    PubMed  CrossRef  Google Scholar 

  3. Sorensen TS, Beerbaum P, Mosegaard J, Rasmusson A, Schaeffter T, Austin C, Razavi R, Greil GF. Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease. Pediatr Radiol. 2008;38:1314–22.

    PubMed  CrossRef  Google Scholar 

  4. Sorensen TS, Korperich H, Greil GF, Eichhorn J, Barth P, Meyer H, Pedersen EM, Beerbaum P. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004;110:163–9.

    PubMed  CrossRef  Google Scholar 

  5. Hussain T, Lossnitzer D, Bellsham-Revell H, Valverde I, Beerbaum P, Razavi R, Bell AJ, Schaeffter T, Botnar RM, Uribe SA, Greil GF. Three-dimensional dual-phase whole-heart mr imaging: clinical implications for congenital heart disease. Radiology. 2012;263:547–54.

    PubMed  CrossRef  Google Scholar 

  6. Uribe S, Tejos C, Razavi R, Schaeffter T. New respiratory gating technique for whole heart cine imaging: integration of a navigator slice in steady state free precession sequences. J Magn Reson Imaging. 2011;34:211–9.

    PubMed  CrossRef  Google Scholar 

  7. Greil GF, Powell AJ, Gildein HP, Geva T. Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol. 2002;39:335–41.

    PubMed  CrossRef  Google Scholar 

  8. Valsangiacomo ER, Levasseur S, McCrindle BW, MacDonald C, Smallhorn JF, Yoo SJ. Contrast-enhanced mr angiography of pulmonary venous abnormalities in children. Pediatr Radiol. 2003;33:92–8.

    PubMed  CrossRef  Google Scholar 

  9. Sorensen TS, Beerbaum P, Korperich H, Pedersen EM. Three-dimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart disease. Int J Cardiovasc Imaging. 2005;21:283–92.

    PubMed  CrossRef  Google Scholar 

  10. Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259:240–7.

    PubMed  CrossRef  Google Scholar 

  11. Makowski MR, Wiethoff AJ, Uribe S, Parish V, Botnar RM, Bell A, Kiesewetter C, Beerbaum P, Jansen CH, Razavi R, Schaeffter T, Greil GF. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology. 2011;260:680–8.

    PubMed  CrossRef  Google Scholar 

  12. Kozerke S, Tsao J, Razavi R, Boesiger P. Accelerating cardiac cine 3D imaging using k-t blast. Magn Reson Med. 2004;52:19–26.

    PubMed  CrossRef  Google Scholar 

  13. Mosegaard J, Herborg P, Sorensen TS. A GPU accelerated spring mass system for surgical simulation. Stud Health Technol Inform. 2005;111:342–8.

    PubMed  Google Scholar 

  14. Sorensen TS, Mosegaard J, Greil GF, Miller S, Seeger A, Hansen OK, Sieverding L. Images in cardiovascular medicine. Virtual cardiotomy for preoperative planning. Circulation. 2007;115:e312.

    PubMed  CrossRef  Google Scholar 

  15. Li H, Leow WK, Chiu IS. Predictive simulation of bidirectional glenn shunt using a hybrid blood vessel model. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2009;12:266–74.

    Google Scholar 

  16. Kislinskiy S, Golembiovský T, Duriez C, Riesenkampff E, Kuehne T, Meinzer HP, Heimann T. Simulation of congenital heart defect corrective surgeries using thin shell elements. In: Wittek A, Miller K, Nielsen PMF, editors. Computational biomechanics for medicine – models, algorithms and implementation. New York, Heidelberg, Dordrecht, London: Springer; 2013:63–74.

    CrossRef  Google Scholar 

  17. Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Schick F, Oppitz M, Meinzer HP, Sieverding L. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96:1 76–85.

    Google Scholar 

  18. Greil GF, Kuettner A, Flohr T, Grasruck M, Sieverding L, Meinzer HP, Wolf I. High-resolution reconstruction of a waxed heart specimen with flat panel volume computed tomography and rapid prototyping. J Comput Assist Tomogr. 2007;31:444–8.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Greil MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sørensen, T.S., Mosegaard, J., Kislinskiy, S., Greil, G.F. (2014). Virtual Surgery in Congenital Heart Disease. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)