Skip to main content

Hypertrophic Cardiomyopathy

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

Hypertrophic cardiomyopathy (HCM) is a common genetic cardiomyopathy caused by mutations in genes which encode for the myofilament protein components of the sarcomere or the z-disc (Maron et al., Heart Rhythm 9(1):57–63, 2012; Konno et al., Current Opin Cardiol 25(3):205–209, 2010; Judge, JAMA 302(22):2471–2476, 2009; Maron et al., Lancet 381:242–255, 2012). It has a prevalence of 1 in 500 in the general population and is a global disease affecting patients in all continents (Maron, Am J Med 116(1):63–65, 2004) and of both genders (Olivotto et al., J Am Coll Cardiol 46(3):480–487, 2005). It is the leading cause of sudden death in young people, with an annual mortality rate of 1 % (Maron, JAMA 287(10):1308–1320, 2002). Since its first description over 50 years ago, the pathophysiology of the disease is still incompletely understood (Teare, Br Heart J 20(1):1–8, 1958). The disease is associated with tremendous heterogeneity with regard to its presentation, phenotype, and prognosis. The diagnosis for HCM is usually made clinically after symptom onset or cardiac events, but may also be found after routine 12-lead electrocardiogram (ECG), heart murmur on cardiac exam, or in family screening of probands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maron BJ, Maron MS, Semsarian C. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm. 2012;9(1):57–63.

    Article  PubMed  Google Scholar 

  2. Konno T, Chang S, Seidman JG, Seidman CE. Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2010;25(3):205–9.

    Article  PubMed  Google Scholar 

  3. Judge DP. Use of genetics in the clinical evaluation of cardiomyopathy. JAMA. 2009;302(22):2471–6.

    Article  PubMed  CAS  Google Scholar 

  4. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381:242–55.

    Article  PubMed  Google Scholar 

  5. Maron BJ. Hypertrophic cardiomyopathy: an important global disease. Am J Med. 2004;116(1):63–5.

    Article  PubMed  Google Scholar 

  6. Olivotto I, Maron MS, Adabag S, et al. Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;46(3):480–7.

    Article  PubMed  Google Scholar 

  7. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.

    Article  PubMed  Google Scholar 

  8. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8.

    PubMed  CAS  Google Scholar 

  9. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):2761–96.

    Article  PubMed  Google Scholar 

  10. Chan RH, Maron B, Olivotto I, et al. Prognostic utility of contrast-enhanced cardiovascular magnetic resonance in hypertrophic cardiomyopathy: an International Multicenter Study. J Am Coll Cardiol. 2012;59(13):E1570.

    Article  Google Scholar 

  11. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995;26(7):1699–708.

    Article  PubMed  CAS  Google Scholar 

  12. Maron MS, Maron BJ, Harrigan C, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54(3):220–8.

    Article  PubMed  Google Scholar 

  13. Maron MS, Lesser JR, Maron BJ. Management implications of massive left ventricular hypertrophy in hypertrophic cardiomyopathy significantly underestimated by echocardiography but identified by cardiovascular magnetic resonance. Am J Cardiol. 2010;105(12):1842–3.

    Article  PubMed  Google Scholar 

  14. Rickers C, Wilke NM, Jerosch-Herold M, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation. 2005;112(6):855–61.

    Article  PubMed  Google Scholar 

  15. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000;342(24):1778–85.

    Article  PubMed  CAS  Google Scholar 

  16. Maron MS, Rowin EJ, Lin D, et al. Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(4):617–36.

    Article  Google Scholar 

  17. Germans T, Wilde AAM, Dijkmans PA, et al. Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. J Am Coll Cardiol. 2006;48(12):2518–23.

    Article  PubMed  Google Scholar 

  18. Olivotto I, Maron MS, Autore C, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52(7):559–66.

    Article  PubMed  Google Scholar 

  19. Maron MS, Hauser TH, Dubrow E, et al. Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(8):1293–8.

    Article  PubMed  Google Scholar 

  20. Keeling AN, Carr JC, Choudhury L. Right ventricular hypertrophy and scarring in mutation positive hypertrophic cardiomyopathy. Eur Heart J. 2010;31(3):381.

    Article  PubMed  Google Scholar 

  21. Maron BJ, Dearani JA, Ommen SR, et al. The case for surgery in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(10):2044–53.

    Article  PubMed  Google Scholar 

  22. Minakata K, Dearani JA, Schaff HV, O’Leary PW, Ommen SR, Danielson GK. Mechanisms for recurrent left ventricular outflow tract obstruction after septal myectomy for obstructive hypertrophic cardiomyopathy. Ann Thorac Surg. 2005;80(3):851–6.

    Article  PubMed  Google Scholar 

  23. Delahaye F, Jegaden O, De Gevigney G, et al. Postoperative and long-term prognosis of myotomy-myomectomy for obstructive hypertrophic cardiomyopathy: influence of associated mitral valve replacement. Eur Heart J. 1993;14(9):1229–37.

    Article  PubMed  CAS  Google Scholar 

  24. Kwon DH, Smedira NG, Popovic ZB, et al. Steep left ventricle to aortic root angle and hypertrophic obstructive cardiomyopathy: study of a novel association using three-dimensional multimodality imaging. Heart. 2009;95(21):1784–91.

    Article  PubMed  CAS  Google Scholar 

  25. Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303.

    Article  PubMed  Google Scholar 

  26. Geske JB, Sorajja P, Ommen SR, Nishimura RA. Left ventricular outflow tract gradient variability in hypertrophic cardiomyopathy. Clin Cardiol. 2009;32(7): 397–402.

    Article  PubMed  Google Scholar 

  27. Geske JB, Cullen MW, Sorajja P, Ommen SR, Nishimura RA. Assessment of left ventricular outflow gradient: hypertrophic cardiomyopathy versus aortic valvular stenosis. JACC Cardiovasc Interv. 2012;5(6): 675–81.

    Article  PubMed  Google Scholar 

  28. Nagueh SF, Bierig SM, Budoff MJ, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: Endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2011;24(5):473–98.

    Article  PubMed  Google Scholar 

  29. Kwon DH, Setser RM, Thamilarasan M, et al. Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 2008;94(10):1295–301.

    Article  PubMed  CAS  Google Scholar 

  30. Harrigan CJ, Appelbaum E, Maron BJ, et al. Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol. 2008;101(5):668–73.

    Article  PubMed  Google Scholar 

  31. Minakata K, Dearani JA, Nishimura RA, Maron BJ, Danielson GK. Extended septal myectomy for hypertrophic obstructive cardiomyopathy with anomalous mitral papillary muscles or chordae. J Thorac Cardiovasc Surg. 2004;127(2):481–9.

    Article  PubMed  Google Scholar 

  32. Shapiro LM, McKenna WJ. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J Am Coll Cardiol. 1983;2(3):43744.

    Article  Google Scholar 

  33. Gruner C, Chan RH, Rowin EJ, et al. Left ventricular apico-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy: implications for diagnosis and management. Circulation. 2012;126(21 Suppl), A14941.

    Google Scholar 

  34. Maron MS, Olivotto I, Harrigan C, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;70:40–7.

    Article  Google Scholar 

  35. Grigg LE, Wigle ED, Williams WG, Daniel LB, Rakowski H. Transesophageal Doppler echocardiography in obstructive hypertrophic cardiomyopathy: clarification of pathophysiology and importance in intraoperative decision making. J Am Coll Cardiol. 1992;20(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  36. Fattori R, Biagini E, Lorenzini M, Buttazzi K, Lovato L, Rapezzi C. Significance of magnetic resonance imaging in apical hypertrophic cardiomyopathy. Am J Cardiol. 2010;105(11):1592–6.

    Article  PubMed  Google Scholar 

  37. Maron MS, Finley JJ, Bos JM, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118(15):1541–9.

    Article  PubMed  Google Scholar 

  38. Lim K-K, Maron BJ, Knight BP. Successful catheter ablation of hemodynamically unstable monomorphic ventricular tachycardia in a patient with hypertrophic cardiomyopathy and apical aneurysm. J Cardiovasc Electrophysiol. 2009;20(4):445–7.

    Article  PubMed  Google Scholar 

  39. Bruder O, Wagner A, Jensen CJ, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):875–87.

    Article  PubMed  Google Scholar 

  40. Maron MS, Appelbaum E, Harrigan CJ, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1(3):184–91.

    Article  PubMed  Google Scholar 

  41. Rubinshtein R, Glockner JF, Ommen SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail. 2010;3(1):51–8.

    Article  PubMed  Google Scholar 

  42. O’Hanlon R, Grasso A, Roughton M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–74.

    Article  PubMed  Google Scholar 

  43. Kwon DH, Setser RM, Popovic ZB, et al. Association of myocardial fibrosis, electrocardiography and ventricular tachyarrhythmia in hypertrophic cardiomyopathy: a delayed contrast enhanced MRI study. Int J Cardiovasc Imaging. 2008;24(6):617–25.

    Article  PubMed  Google Scholar 

  44. Moon JCC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003;41(9):1561–7.

    Article  PubMed  Google Scholar 

  45. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.

    Article  PubMed  CAS  Google Scholar 

  46. Papavassiliu T, Schnabel P, Schröder M, Borggrefe M. CMR scarring in a patient with hypertrophic cardiomyopathy correlates well with histological findings of fibrosis. Eur Heart J. 2005;26(22):2395.

    Article  PubMed  Google Scholar 

  47. Moravsky G, Ofek E, WIlliams L, Butany J, Rakowski H, Crean A. Cardiovascular magnetic resonance imaging with late gadolinium enhancement and histopathological correlation in hypertrophic cardiomyopathy. Circulation. 2011;124, A14546.

    Google Scholar 

  48. Kwon DH, Smedira NG, Rodriguez ER, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol. 2009;54(3):242–9.

    Article  PubMed  Google Scholar 

  49. Kuribayashi T, Roberts WC. Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol. 1992;70(15):1333–40.

    Article  PubMed  CAS  Google Scholar 

  50. Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14(1):13.

    Article  PubMed  Google Scholar 

  51. Chan RH, Maron BJ, Olivotto I, et al. Prognostic utility of contrast-enhanced cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: an International Multicenter Study. Circulation. 2012;126(21 Suppl), A13139.

    Google Scholar 

  52. Adabag S, Maron BJ, Appelbaum E, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51(14):1369–74.

    Article  PubMed  Google Scholar 

  53. Monserrat L, Elliott PM, Gimeno JR, Sharma S, Penas-Lado M, McKenna WJ. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients. J Am Coll Cardiol. 2003;42(5):873–9.

    Article  PubMed  Google Scholar 

  54. Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114(1):32–9.

    Article  PubMed  Google Scholar 

  55. Appelbaum E, Maron BJ, Adabag S, et al. Intermediate-signal-intensity late gadolinium enhancement predicts ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. 2012;5(1):78–85.

    Article  PubMed  Google Scholar 

  56. Chan RH, Afilalo J, Maron BJ, et al. Prognostic utility of intermediate-signal-intensity late gadolinium enhancement in patients with hypertrophic cardiomyopathy. Circulation. 2012;126(21 Suppl), A17374.

    Google Scholar 

  57. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903.

    Article  PubMed  Google Scholar 

  58. Kawada N, Sakuma H, Yamakado T, et al. Hypertrophic cardiomyopathy: MR measurement of coronary blood flow and vasodilator flow reserve in patients and healthy subjects. Radiology. 1999;211(1):129–35.

    Article  PubMed  CAS  Google Scholar 

  59. Petersen SE, Jerosch-Herold M, Hudsmith LE, et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007;115(18):2418–25.

    Article  PubMed  Google Scholar 

  60. Kaimoto S, Kawasaki T, Kuribayashi T, et al. Myocardial perfusion abnormality in the area of ventricular septum-free wall junction and cardiovascular events in nonobstructive hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2012;28(7):1829–39.

    Article  PubMed  Google Scholar 

  61. Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ. Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J. 2006;151(2):426–35.

    Article  PubMed  Google Scholar 

  62. Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation. 1995;91(5):1596–601.

    Article  PubMed  CAS  Google Scholar 

  63. Maron BJ. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol. 1986;7(1):190–203.

    Article  PubMed  CAS  Google Scholar 

  64. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.

    Article  PubMed  CAS  Google Scholar 

  65. Fagard R. Athlete’s heart. Heart. 2003;89(12): 1455–61.

    Article  PubMed  Google Scholar 

  66. Carasso S, Yang H, Woo A, Jamorski M, Wigle ED, Rakowski H. Diastolic myocardial mechanics in hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2010;23(2):164–71.

    Article  PubMed  Google Scholar 

  67. Kato TS, Noda A, Izawa H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation. 2004;110(25):3808–14.

    Article  PubMed  Google Scholar 

  68. Saito M, Okayama H, Yoshii T, et al. The differences in left ventricular torsional behavior between patients with hypertrophic cardiomyopathy and hypertensive heart disease. Int J Cardiol. 2011;150(3):301–6.

    Article  PubMed  Google Scholar 

  69. Lever HM, Karam RF, Currie PJ, Healy BP. Hypertrophic cardiomyopathy in the elderly. Distinctions from the young based on cardiac shape. Circulation. 1989;79(3):580–9.

    Article  PubMed  CAS  Google Scholar 

  70. Binder J, Ommen SR, Gersh BJ, et al. Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations. Mayo Clin Proc. 2006;81(4):459–67.

    Article  PubMed  Google Scholar 

  71. Mehta A, Beck M, Eyskens F, et al. Fabry disease: a review of current management strategies. QJM. 2010;103(9):641–59.

    Article  PubMed  CAS  Google Scholar 

  72. Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352(4):362–72.

    Article  PubMed  CAS  Google Scholar 

  73. Bayrak F, Komurcu-Bayrak E, Mutlu B, Kahveci G, Basaran Y, Erginel-Unaltuna N. Ventricular pre-excitation and cardiac hypertrophy mimicking hypertrophic cardiomyopathy in a Turkish family with a novel PRKAG2 mutation. Eur J Heart Fail. 2006;8(7):712–5.

    Article  PubMed  CAS  Google Scholar 

  74. Engberding R, Bender F. Echocardiographic detection of persistent myocardial sinusoids. Z Kardiol. 1984;73(12):786–8.

    PubMed  CAS  Google Scholar 

  75. Stöllberger C, Finsterer J. Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr. 2004;17(1):91–100.

    Article  PubMed  Google Scholar 

  76. Hofer M, Stöllberger C, Finsterer J. Acquired noncompaction associated with myopathy. Int J Cardiol. 2007;121(3):296–7.

    Article  PubMed  Google Scholar 

  77. Ichida F. Left ventricular noncompaction. Circ J. 2009;73(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  78. Zaragoza MV, Arbustini E, Narula J. Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology. Curr Opin Pediatr. 2007;19(6):619–27.

    Article  PubMed  Google Scholar 

  79. Biagini E, Ragni L, Ferlito M, et al. Different types of cardiomyopathy associated with isolated ventricular noncompaction. Am J Cardiol. 2006;98(6):821–4.

    Article  PubMed  Google Scholar 

  80. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.

    Article  PubMed  CAS  Google Scholar 

  81. Aras D, Tufekcioglu O, Ergun K, et al. Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail. 2006;12(9):726–33.

    Article  PubMed  Google Scholar 

  82. Xing Y, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006;88(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  83. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MRG, Towbin JA. Genetic evaluation of cardiomyopathy–a Heart Failure Society of America practice guideline. J Card Fail. 2009;15(2):83–97.

    Article  PubMed  Google Scholar 

  84. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666–71.

    Article  PubMed  CAS  Google Scholar 

  85. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2): 507–13.

    Article  PubMed  CAS  Google Scholar 

  86. Belanger AR, Miller MA, Donthireddi UR, Najovits AJ, Goldman ME. New classification scheme of left ventricular noncompaction and correlation with ventricular performance. Am J Cardiol. 2008;102(1): 92–6.

    Article  PubMed  Google Scholar 

  87. Finsterer J, Stollberger C. Definite, probable, or possible left ventricular hypertrabeculation/noncompaction. Int J Cardiol. 2008;123(2):175–6.

    Article  PubMed  Google Scholar 

  88. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101–5.

    Article  PubMed  Google Scholar 

  89. Lofiego C, Biagini E, Pasquale F, et al. Wide spectrum of presentation and variable outcomes of isolated left ventricular non-compaction. Heart. 2007;93(1):65–71.

    Article  PubMed  CAS  Google Scholar 

  90. Takano H, Komuro I. Beta-blockers have beneficial effects even on unclassified cardiomyopathy such as isolated ventricular noncompaction. Intern Med. 2002;41(8):601–2.

    Article  PubMed  Google Scholar 

  91. Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities. Heart Rhythm. 2008;5(6):e1–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond H. M. Chan MD, MPH, FRCP(C), BScPhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, R.H.M., Maron, M.S. (2014). Hypertrophic Cardiomyopathy. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics