Cardiac Shunts: ASD, VSD, PDA



Atrial septum defects (ASDs), ventricular septum defects (VSDs), and patent ductus arteriosus (PDA) are common congenital heart defects in both children and adults (Webb and Gatzoulis, Circulation 114:1645–1653, 2006; Minette and Sahn, Circulation 114:2190–2197, 2006; Schneider and Moore, Circulation 114:1873–1882, 2006). Morphological classification of these anomalies is important for treatment decisions. Accurate morphological classification requires imaging technique that is able to identify the defect and define its site, size, and relationship to the structures forming its margins. Imaging technique should also be able to identify associated anomalies, the amount of shunt through the defect, and accurate analysis of the heart and valve functions. Echocardiography is a great method for diagnosis of intracardiac shunts with good resolution to image cardiac morphology in detail and can identify small intracardiac defects and measure the shunt volume. Cardiac MR provides a comprehensive assessment of intracardiac anatomy and accurately quantifies biventricular function and blood flow. Detections of small defects (i.e., apical VSD) may require high-resolution imaging and CT can be the preferred technique. Assessment of associated extracardiac anomalies such as anomalous venous return can be optimally done with CT. In this chapter, a complete review of the shunts and clinical applications of CT and MRI will be presented.


Inferior Vena Cava Patent Ductus Arteriosus Superior Vena Cava Interatrial Septum Sinus Venosus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Webb G, Gatzoulis M. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006;114:1645–53.PubMedGoogle Scholar
  2. 2.
    Minette MS, Sahn DJ. Ventricular septal defects. Circulation. 2006;114:2190–7.PubMedGoogle Scholar
  3. 3.
    Schneider DJ, Moore JW. Patent ductus arteriosus. Circulation. 2006;114:1873–82.PubMedGoogle Scholar
  4. 4.
    Harley HR. The sinus venosus type of interatrial septal defect. Thorax. 1958;13(1):12–27.PubMedGoogle Scholar
  5. 5.
    Anderson RH, Webb S, Brown NA. Clinical anatomy of the atrial septum with reference to its developmental components. Clin Anat. 1999;12: 362–74.PubMedGoogle Scholar
  6. 6.
    Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88:104–10.PubMedGoogle Scholar
  7. 7.
    Anderson RH, Brown NA. The anatomy of the heart revisited. Anat Rec. 1996;246(1):1e7.Google Scholar
  8. 8.
    Thompson T, Evans W. Paradoxical embolism. Quart J Med. 1930;23:135–40.Google Scholar
  9. 9.
    Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.PubMedGoogle Scholar
  10. 10.
    Webster MW, Chancellor AM, Smith HJ, et al. Patent foramen ovale in young stroke patients. Lancet. 1988;8601:11–2.Google Scholar
  11. 11.
    Homma S, Di Tullio MR, Sacco RL, Mihalatos D, Li Mandro G, Mohr JP. Characteristics of patent foramen ovale associated with cryptogenic stroke: a biplane transesophageal echocardiographic study. Stroke. 1994;25:582–6.PubMedGoogle Scholar
  12. 12.
    Saremi F, Channual S, Raney A, et al. Imaging of patent foramen ovale with 64-section multidetector CT. Radiology. 2008;249(2):483–92.PubMedGoogle Scholar
  13. 13.
    Ho SY, McCarthy KP, Rigby ML. Morphological features pertinent to interventional closure of patent oval foramen. J Interv Cardiol. 2003;16(1):33–8.PubMedGoogle Scholar
  14. 14.
    Natanzon A, Goldman ME. Patent foramen ovale: anatomy versus pathophysiology – which determines stroke risk? J Am Soc Echocardiogr. 2003;16(1):71–6.PubMedGoogle Scholar
  15. 15.
    Mohrs OK, Petersen SE, Erkapic D, Victor A, Schlosser T, Nowak B, Kauffmann G, Voigtlaender T, Kauczor HU. Dynamic contrast-enhanced MRI before and after transcatheter occlusion of patent foramen ovale. AJR Am J Roentgenol. 2007;188:844–9.PubMedGoogle Scholar
  16. 16.
    Nusser T, Hoher M, Merkle N, et al. Cardiac magnetic resonance imaging and transesophageal echocardiography in patients with transcatheter closure of patent foramen ovale. J Am Coll Cardiol. 2006;48:322–9.PubMedGoogle Scholar
  17. 17.
    Thomson LE, Crowley AL, Heitner JF, et al. Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging. 2008;1(1):31–40.PubMedGoogle Scholar
  18. 18.
    Sun JP, Stewart WJ, Hanna J, Thomas JD. Diagnosis of patent foramen ovale by contrast versus color Doppler by transesophageal echocardiography: relation to atrial size. Am Heart J. 1996;131(2):239–44.PubMedGoogle Scholar
  19. 19.
    Kim YJ, Hur J, Shim CY, et al. Patent foramen ovale: diagnosis with multidetector CT – comparison with transesophageal echocardiography. Radiology. 2009;250(1):61–7.PubMedGoogle Scholar
  20. 20.
    Koenig P, Cao QL, Heitschmidt M, Waight DJ, Hijazi ZM. Role of intracardiac echocardiographic guidance in transcatheter closure of atrial septal defects and patent foramen ovale using the Amplatzer device. J Interv Cardiol. 2003;16(1):51–62.PubMedGoogle Scholar
  21. 21.
    Graham LN, Melton IC, MacDonald S, Crozier IG. Value of CT localization of the fossa ovalis prior to transseptal left heart catheterization for left atrial ablation. Europace. 2007;9(6):417–23.PubMedGoogle Scholar
  22. 22.
    Chiari H. Uber Netzbildungcn im rechten Vorhof des Herzens. Beitr Pathol Anat. 1897;22:1–10.Google Scholar
  23. 23.
    Gresham GA. Networks in the right side of the heart. Br Heart J. 1957;19:381–6.PubMedGoogle Scholar
  24. 24.
    Bhatnagar KP, Nettleton GS, Campbell FR, Wagner CE, Kuwabara N, Muresian H. Chiari anomalies in the human right atrium. Clin Anat. 2006;19(6):510–6.PubMedGoogle Scholar
  25. 25.
    Goedde TA, Conetta D, Rumisek JD. Chiari network entrapment of thromboemboli: congenital inferior vena cava filter. Ann Thorac Surg. 1990;49:317–8.PubMedGoogle Scholar
  26. 26.
    Schneider B, Hofmann T, Justen MH, Meinertz T. Chiari’s network: normal anatomic variant or risk factor for arterial embolic events? J Am Coll Cardiol. 1995;26(1):203–10.PubMedGoogle Scholar
  27. 27.
    Schneider B, Hanrath P, Vogel P, Meinertz T. Improved morphologic characterization of atrial septal aneurysm by transesophageal echocardiography: relation to cerebrovascular events. J Am Coll Cardiol. 1990;16:1000–9.PubMedGoogle Scholar
  28. 28.
    Zabalgoitia-Reyes M, Herrerra C, Ghandi DK, Mehlman DJ, McPherson DD, Talano JV. A possible mechanism for neurologic ischemic events in patients with atrial septal aneurysm. Am J Cardiol. 1990;66:761–4.PubMedGoogle Scholar
  29. 29.
    Mattioli AV, Aquilina M, Oldani A, Longhini C, Mattioli G. Atrial septal aneurysm as a cardioembolic source in adult patients with stroke and normal carotid arteries. A multicentre study. Eur Heart J. 2001;22(3):261–8.PubMedGoogle Scholar
  30. 30.
    Mugge A, Daniel WG, Angermann C, et al. Atrial septal aneurysm in adult patients. A multicenter study using transthoracic and transesophageal echocardiography. Circulation. 1995;91(11):2785–92.PubMedGoogle Scholar
  31. 31.
    Schuchlenz HW, Weihs W, Horner S, Quehenberger F. The association between the diameter of a patent foramen ovale and the risk of embolic cerebrovascular events. Am J Med. 2000;109:456–62.PubMedGoogle Scholar
  32. 32.
    Olivares-Reyes A, Chan S, Lazar EJ, et al. Atrial septal aneurysm: a new classification in two hundred five adults. J Am Soc Echocardiogr. 1997;10:644–56.PubMedGoogle Scholar
  33. 33.
    Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Atrial septal aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll Cardiol. 1991;18:1223–9, 99.PubMedGoogle Scholar
  34. 34.
    Hanley PC, TajiK AJ, Hynes JK, et al. Diagnosis and classification of atrial septal aneurysm by two-dimensional echocardiography: report of 80 consecutive cases. J Am Coll Cardiol. 1985;6:1370–82.PubMedGoogle Scholar
  35. 35.
    Schuchlenz HW, Saurer G, Weihs W, Rehak P. Persisting eustachian valve in adults: relation to patent foramen ovale and cerebrovascular events. J Am Soc Echocardiogr. 2004;17(3):231–3.PubMedGoogle Scholar
  36. 36.
    Ley S, Ley-Zaporozhan J, Kreitner KF, et al. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: impact of different ECG gating methods and breathing schema. Eur J Radiol. 2007;61(1):124–9.PubMedGoogle Scholar
  37. 37.
    Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103:2476–82.PubMedGoogle Scholar
  38. 38.
    O’Donnell M. NMR blood flow using multiecho, phase contrast sequences. Med Phys. 1985;12:59–64.PubMedGoogle Scholar
  39. 39.
    Chatzimavroudis GP, Zhang H, Halliburton SS, et al. Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J Magn Reson Imaging. 2003;17:65–71.PubMedGoogle Scholar
  40. 40.
    Boehrer JD, Lange RA, Willard JE, Grayburn PA, Hillis LD. Advantages and limitations of methods to detect, localize, and quantitate intracardiac left-to-right shunting. Am Heart J. 1992;124:448–55.PubMedGoogle Scholar
  41. 41.
    Daniel WC, Lange RA, Willard JE, Landau C, Hillis LD. Oximetric versus indicator dilution techniques for quantitating intracardiac left-to-right shunting in adults. Am J Cardiol. 1995;75:199–200.PubMedGoogle Scholar
  42. 42.
    Cigarroa RG, Lange RA, Hillis LD. Oximetric quantitation of intracardiac left-to-right shunting: limitations of the Qp/Qs ratio. Am J Cardiol. 1989;64:246–7.PubMedGoogle Scholar
  43. 43.
    Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial volume effects. J Magn Reson Imaging. 1993;3:377–85.PubMedGoogle Scholar
  44. 44.
    Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22(3):651–71.PubMedGoogle Scholar
  45. 45.
    Andersen AH, Kirsch JE. Analysis of noise in phase contrast MR imaging. Med Phys. 1996;23:857–69.PubMedGoogle Scholar
  46. 46.
    Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging: a comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.PubMedGoogle Scholar
  47. 47.
    Ley S, Fink C, Puderbach M, Zaporozhan J, et al. MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol. 2006;187(2):439–44.PubMedGoogle Scholar
  48. 48.
    Stahlberg F, Thomsen C, Sondergaard L, Henriksen O. Pulse sequence design for MR velocity mapping of complex flow: notes on the necessity of low echo times. Magn Reson Imaging. 1994;12:1255–62.PubMedGoogle Scholar
  49. 49.
    Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity en-coded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157:9–16.PubMedGoogle Scholar
  50. 50.
    Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and magnetic resonance imaging in patients with pulmonary hypertension. Chest. 2001;120:502–7.PubMedGoogle Scholar
  51. 51.
    Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91:1523–5, A1529.PubMedGoogle Scholar
  52. 52.
    Mohiaddin RH, Underwood R, Romeira L, et al. Comparison between cine magnetic resonance velocity mapping and first-pass radionuclide angiocardiography for quantitating intracardiac shunts. Am J Cardiol. 1995;75:529–32.PubMedGoogle Scholar
  53. 53.
    Esmaeili A, Hohn R, Koch A, Vogl TJ, Hofstetter R, Abolmaali N. Assessment of shunt volumes in children with ventricular septal defects: comparative quantification of MR flow measurements and invasive oximetry. Clin Res Cardiol. 2006;95:523–30.PubMedGoogle Scholar
  54. 54.
    Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. Invest Radiol. 1993;28:109–15.PubMedGoogle Scholar
  55. 55.
    Goldberg A, Jha S. Phase-contrast MRI and applications in congenital heart disease. Clin Radiol. 2012;67(5):399–410.PubMedGoogle Scholar
  56. 56.
    Mymin D, Sharma GP. Total and effective coronary blood flow in coronary and noncoronary heart disease. J Clin Invest. 1974;53:363–73.PubMedGoogle Scholar
  57. 57.
    Debl K, Djavidani B, Buchner S, et al. Quantification of left-to-right shunting in adult congenital heart disease: phase-contrast cine MRI compared with invasive oximetry. Br J Radiol. 2009;82:386e91.Google Scholar
  58. 58.
    Blom NA, Ottenkamp J, Jongeneel TH, DeRuiter MC, Gittenberger-de Groot AC. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol. 2005;26(4):338–43.PubMedGoogle Scholar
  59. 59.
    Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87:888–9.PubMedGoogle Scholar
  60. 60.
    Maeno YV, Benson LN, McLaughlin PR, Boutin C. Dynamic morphology of the secundum atrial septal defect evaluated by three dimensional transoesophageal echocardiography. Heart. 2000;83:673–7.PubMedGoogle Scholar
  61. 61.
    Ferreira SMAG, Ho SY, Anderson RH. Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt. Br Heart J. 1992;67:316–20.PubMedGoogle Scholar
  62. 62.
    Ross DN. The sinus venosus type of atrial septal defect. Guy’s Hosp Rep. 1956;105:376–81.Google Scholar
  63. 63.
    Davia JE, Cheitlin MD, Bedynek JL. Sinus venosus atrial septal defect. Am Heart J. 1973;85:177–85.PubMedGoogle Scholar
  64. 64.
    Brickner ME, Hillis LD, Lange RA. Congenital heart disease in adults- first of two parts. N Engl J Med. 2000;342:256–63.PubMedGoogle Scholar
  65. 65.
    Van Praagh S, Carrera ME, Sanders SP, Mayer JE, Van Praagh R. Sinus venosus defects: unroofing of the right pulmonary veins-anatomic and echocardiographic findings and surgical treatment. Am Heart J. 1994;128:365–79.PubMedGoogle Scholar
  66. 66.
    al Zaghal AM, Li J, Anderson RH, Lincoln C, Shore D, Rigby ML. Anatomical criteria for the diagnosis of sinus venosus defects. Heart. 1997;78(3):298–304.PubMedGoogle Scholar
  67. 67.
    Butts RJ, Crean AM, Hlavacek AM, et al. Veno-venous bridges: the forerunners of the sinus venosus defect. Cardiol Young. 2011;21(6):623–30.PubMedGoogle Scholar
  68. 68.
    Crystal MA, Al Najashi K, Williams WG, Redington AN, Anderson RH. Inferior sinus venosus defect: echocardiographic diagnosis and surgical approach. Thorac Cardiovasc Surg. 2009;137(6):1349–55.Google Scholar
  69. 69.
    Kafka H, Mohiaddin RH. Cardiac MRI and pulmonary MR angiography of sinus venosus defect and partial anomalous pulmonary venous connection in cause of right undiagnosed ventricular enlargement. AJR Am J Roentgenol. 2009;192:259–66.PubMedGoogle Scholar
  70. 70.
    Swan HJC, Kirklin JW, Becu LM, Wood EH. Anomalous connection of right pulmonary veins to superior vena cava with interatrial communications. Hemodynamic data in eight cases. Circulation. 1957;16:54–66.PubMedGoogle Scholar
  71. 71.
    Vogel M, Berger F, Kramer A, Alexi-Meshkishvili V, Lange PE. Incidence of secondary pulmonary hypertension in adults with atrial septal or sinus venosus defects. Heart. 1999;82:30–3.PubMedGoogle Scholar
  72. 72.
    Kronzon I, Tunick PA, Freedberg RS, Trehan N, Rosenzweig BP, Schwinger ME. Transesophageal echocardiography is superior to transthoracic echocardiography in the diagnosis of sinus venosus atrial septal defect. J Am Coll Cardiol. 1991;17:537–42.PubMedGoogle Scholar
  73. 73.
    Pascoe RD, Oh JK, Warnes CA, Danielson GK, Tajik AJ, Seward JB. Diagnosis of sinus venosus atrial septal defect with transesophageal echocardiography. Circulation. 1996;94:1049–55.PubMedGoogle Scholar
  74. 74.
    Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.PubMedGoogle Scholar
  75. 75.
    Valente AM, Sena L, Powell AJ, Del Nido PJ, Geva T. Cardiac magnetic resonance imaging evaluation of sinus venosus defects: comparison to surgical findings. Pediatr Cardiol. 2007;28:51–6.PubMedGoogle Scholar
  76. 76.
    Plymale J, Kolinski K, Frommelt P, Bartz P, Tweddell J, Earing MG. Inferior sinus venosus defects: anatomic features and echocardiographic correlates. Pediatr Cardiol. 2013;34:322–6.PubMedGoogle Scholar
  77. 77.
    Anderson RH, Ho SY, Falcao S, et al. The diagnostic features of atrioventricular septal defect with common atrioventricular junction. Cardiol Young. 1998;8(1):33–49.PubMedGoogle Scholar
  78. 78.
    Smallhorn JF. Cross-sectional echocardiographic assessment of atrioventricular septal defect: basic morphology and preoperative risk factors. Echocardiography. 2001;18:415–32.PubMedGoogle Scholar
  79. 79.
    Arisawa J, Morimoto S, Ikezoe J, et al. Cross sectional echocardiographic anatomy of common atrioventricular valve in atrial isomerism. Br Heart J. 1989;62(4):291–7.PubMedGoogle Scholar
  80. 80.
    De Tommasi S, Daliento L, Ho SY, Macartney FJ, Anderson RH. Analysis of atrioventricular junction, ventricular mass, and ventriculoarterial junction in 43 specimens with atrial isomerism. Br Heart J. 1981;45(3):236–47.PubMedGoogle Scholar
  81. 81.
    Parsons JM, Baker EJ, Anderson RH, et al. Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J. 1990;64(2):138–45.PubMedGoogle Scholar
  82. 82.
    Quaegebeur J, Kirklin JW, Pacifico AD, Bargeron Jr LM. Surgical experience with unroofed coronary sinus. Ann Thorac Surg. 1979;27(5):418–25.PubMedGoogle Scholar
  83. 83.
    Ootaki Y, Yamaguchi M, Yoshimura N, Oka S, Yoshida M, Hasegawa T. Unroofed coronary sinus syndrome: diagnosis, classification, and surgical treatment. J Thorac Cardiovasc Surg. 2003;126(5):1655–6.PubMedGoogle Scholar
  84. 84.
    Attenhofer Jost CH, Connolly HM, Danielson GK, Dearani JA, Warnes CA, Jamil Tajik A. Clinical features and surgical outcome in 25 patients with fenestrations of the coronary sinus. Cardiol Young. 2007;17(6):592–600.PubMedGoogle Scholar
  85. 85.
    Matsuwaka R, Tomokuni T, Ishikawa S, Watanabe F, Matsushita T, Matsuda H. Partially unroofed coronary sinus associated with tricuspid atresia: an important associated lesion in the Fontan operation. Eur J Cardiothorac Surg. 1987;1:180–2.PubMedGoogle Scholar
  86. 86.
    Brancaccio G, Miraldi F, Ventriglia F, Michielon G, Di Donato RM, De Santis M. Multidetector-row helical computed tomography imaging of unroofed coronary sinus. Int J Cardiol. 2003;91:251–3.PubMedGoogle Scholar
  87. 87.
    Chaturvedi A, Dubinsky TJ, Maki JH. MR findings of a rare defect, coronary sinus ASD. Int J Cardiovasc Imaging. 2012;28(2):429–30.PubMedGoogle Scholar
  88. 88.
    Du ZD, Koenig P, Cao QL, et al. Comparison of transcatheter closure of secundum atrial septal defect using the Amplatzer septal occluder associated with deficient versus sufficient rims. Am J Cardiol. 2002;90:865–9.PubMedGoogle Scholar
  89. 89.
    Fischer G, Stieh J, Uebing A, et al. Experience with transcatheter closure of secundum atrial septal defects using the Amplatzer septal occluder: a single centre study in 236 consecutive patients. Heart. 2003;89:199–204.PubMedGoogle Scholar
  90. 90.
    Veldtman GR, Razack V, Siu S, El-Hajj H, Walker F, Webb GD, Benson LN, McLaughlin PR. Right ventricular form and function after percutaneous atrial septal defect device closure. J Am Coll Cardiol. 2001;37:2108–13.PubMedGoogle Scholar
  91. 91.
    Rickers C, Jerosch-Herold M, Hu X, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.PubMedGoogle Scholar
  92. 92.
    Lee T, Tsai IC, Fu YC, Jan SL, Wang CC, Chang Y, Chen MC. MDCT evaluation after closure of atrial septal defect with an Amplatzer septal occluder. AJR Am J Roentgenol. 2007;188(5):W431–9.PubMedGoogle Scholar
  93. 93.
    Murphy JG, Gersh BJ, McGoon MD, et al. Long-term outcome after surgical repair of isolated atrial septal defect: follow-up at 27 to 32 years. N Engl J Med. 1990;323:1645–50.PubMedGoogle Scholar
  94. 94.
    Somerville J, Williams RG, Webb GD. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37:1170–5.PubMedGoogle Scholar
  95. 95.
    Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J. 2004;147:425–39.PubMedGoogle Scholar
  96. 96.
    Warnes CA, Williams RG, Bashore TM. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.PubMedGoogle Scholar
  97. 97.
    Anderson RH, Ho HY, Becker AE. Anatomy of the human atrioventricular junctions revisited. Anat Rec. 2000;260:81–91.PubMedGoogle Scholar
  98. 98.
    Saremi F, Krishnan S. Cardiac conduction system: anatomic landmarks relevant to interventional electrophysiologic techniques demonstrated with 64-detector CT. Radiographics. 2007;27(6):1539–65.PubMedGoogle Scholar
  99. 99.
    Tandon R, Edwards JE. Aneurysm like formations in relation to membranous ventricular septum. Circulation. 1973;47:1089–97.PubMedGoogle Scholar
  100. 100.
    Langer C, Horstkotte D, Piper C. Aneurysm of the membranous septum causes pre-syncopes and transient bilateral blindness. Eur Heart J. 2007;28(7):784.PubMedGoogle Scholar
  101. 101.
    Cheema OM, Patel AA, Chang SM, Shah DJ. Gerbode ventricular septal defect diagnosed at cardiac MR imaging: case report. Radiology. 2009;252(1):50–2.PubMedGoogle Scholar
  102. 102.
    Panduranga P, Mukhaini M. A rare type of Gerbode defect. Echocardiography. 2011;28(6):E118–20.PubMedGoogle Scholar
  103. 103.
    Becu LM, Fontana RS, DuShane JW, Kirklin JW, Burchell HB, Edwards JE. Anatomic and pathologic studies in ventricular septal defects. Circulation. 1956;14:349–64.PubMedGoogle Scholar
  104. 104.
    Moulaert AJ. Anatomy of ventricular septal defect. In: Anderson RH, Shineboume EA, editors. Paediatric cardiology 1977. Edinburgh/London: Churchill Livingstone; 1978. p. 113–24.Google Scholar
  105. 105.
    Soto B, Becker AE, Moulaert AJ, Lie JT, Anderson RH. Classification of ventricular septal defects. Br Heart J. 1980;43:332–43.PubMedGoogle Scholar
  106. 106.
    Sutherland GR, Godman MJ, Smallhorn JF, Guiterras P, Anderson RH, Hunter S. Ventricular septal defects: two dimensional echocardiographic and morphological correlations. Br Heart J. 1982;47:316–28.PubMedGoogle Scholar
  107. 107.
    Lue HC, Sung TC, Hou SH, et al. Ventricular septal defect in Chinese with aortic valve prolapse and aortic regurgitation. Heart Vessels. 1986;2(2):111–6.PubMedGoogle Scholar
  108. 108.
    Capelli H, Andrade JL, Somerville J. Classification of the site of ventricular septal defect by 2-dimensional echocardiography. Am J Cardiol. 1983;51(9):1474–80.PubMedGoogle Scholar
  109. 109.
    Baker EJ, Leung MP, Anderson RH, Fischer DR, Zuberbuhler JR. The cross sectional anatomy of ventricular septal defects: a reappraisal. Br Heart J. 1988;59(3):339–51.PubMedGoogle Scholar
  110. 110.
    Macé L, Dervanian P, Le Bret E, et al. “Swiss cheese” septal defects: surgical closure using a single patch with intermediate fixings. Ann Thorac Surg. 1999;67(6):1754–8.PubMedGoogle Scholar
  111. 111.
    Kirklin JK, Castaneda AR, Keane JF, Fellows KE, Norwood WI. Surgical management of multiple ventricular septal defects. J Thorac Cardiovasc Surg. 1980;80:485–93.PubMedGoogle Scholar
  112. 112.
    Griffin ML, Sullivan ID, Anderson RH, Macartney FJ. Doubly committed subarterial ventricular septal defect: new morphological criteria with echocardiographic and angiocardiographic correlation. Br Heart J. 1988;59(4):474–9.PubMedGoogle Scholar
  113. 113.
    Ozkutlu S, Saraçlar M, Alehan D, Yurdakul Y, Firat P, Tokel K. Subpulmonary and subaortic ridges in doubly committed subarterial ventricular septal defect: an echocardiographic study. Eur Heart J. 1996;17(6):935–9.PubMedGoogle Scholar
  114. 114.
    Newfeld EA, Muster AJ, Paul MH, Idriss FS, Riker WL. Discrete subvalvular aortic stenosis in childhood: study of 51 patients. Am J Cardiol. 1976;38:53–61.PubMedGoogle Scholar
  115. 115.
    al-Marsafawy HM, Ho SY, Redington AN, Anderson RH. The relationship of the outlet septum to the aortic outflow tract in hearts with interruption of the aortic arch. J Thorac Cardiovasc Surg. 1995;109(6):1225–36.PubMedGoogle Scholar
  116. 116.
    Niwa K, Perloff JK, Kaplan S, Child JS, Miner PD. Eisenmenger syndrome in adults: ventricular septal defect, truncus arteriosus, univentricular heart. J Am Coll Cardiol. 1999;34:223–32.PubMedGoogle Scholar
  117. 117.
    Neumayer U, Stone S, Somerville J. Small ventricular septal defects in adults. Eur Heart J. 1998;19(10): 1573–82.PubMedGoogle Scholar
  118. 118.
    Backer CL, Winters RC, Zales VR, et al. Restrictive ventricular septal defect: how small is too small to close? Ann Thorac Surg. 1993;56:1014–8.PubMedGoogle Scholar
  119. 119.
    Mongeon FP, Burkhart HM, Ammash NM, et al. Indications and outcomes of surgical closure of ventricular septal defect in adults. JACC Cardiovasc Interv. 2010;3(3):290–7.PubMedGoogle Scholar
  120. 120.
    Lun K, Li H, Leung MP, Chau AK, Yung T, Chiu CS, Cheung Y. Analysis of indications for surgical closure of subarterial ventricular septal defect without associated aortic cusp prolapse and aortic regurgitation. Am J Cardiol. 2001;87:1266–70.PubMedGoogle Scholar
  121. 121.
    Fu Y-C, Bass J, Amin Z, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: result of the U.S. phase I trial. J Am Coll Cardiol. 2006;47:319–25.PubMedGoogle Scholar
  122. 122.
    Tomita H, Arakaki Y, Ono Y, Yamada O, Yagihara T, Echigo S. Impact of noncoronary cusp prolapse in addition to right coronary cusp prolapse in patients with a perimembranous ventricular septal defect. Int J Cardiol. 2005;101(2):279–83.PubMedGoogle Scholar
  123. 123.
    Kumar K, Lock JE, Geva T. Apical muscular ventricular septal defects between the left ventricle and the right ventricular infundibulum. Diagnostic and interventional considerations. Circulation. 1997;95(5):1207–13.PubMedGoogle Scholar
  124. 124.
    Cassels DE. The ductus arteriosus. Springfield: Charles C. Thomas; 1973.Google Scholar
  125. 125.
    Lloyd TR, Beekman III RH. Clinically silent patent ductus arteriosus. Am Heart J. 1994;127:1664–5.PubMedGoogle Scholar
  126. 126.
    Cerruto G, Mancuso L. Systemic and pulmonary embolization in a patient with patent ductus arteriosus. Eur J Echocardiogr. 2005;6(5):376–8.PubMedGoogle Scholar
  127. 127.
    Krichenko A, Benson LN, Burrows P, Moes CA, McLaughlin P, Freedon RM. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol. 1989;63:877–9.PubMedGoogle Scholar
  128. 128.
    Andrade A, Vargas-Barron J, Rijlaarsdam M, Romero-Cardenas A, Keirns C, Espinola N. Utility of transesophageal echocardiography in the examination of adult patients with patent ductus arteriosus. Am Heart J. 1995;130(3 Pt 1):543–6.PubMedGoogle Scholar
  129. 129.
    Li YL, Wong DT, Wei W, Liu J. A new method for detecting the proximal aortic arch and innominate artery by transesophageal echocardiography. Anesthesiology. 2006;105:226–7.PubMedGoogle Scholar
  130. 130.
    Moore JW, George L, Kirkpatrick SE, et al. Percutaneous closure of the small patent ductus arteriosus using occluding spring coils. J Am Coll Cardiol. 1994;23:759–65.PubMedGoogle Scholar
  131. 131.
    Morgan-Jughes GJ, Marshall AJ, Roobottome C. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. Am J Roentgenol. 2003;181:749–54.Google Scholar
  132. 132.
    Celermajer DS, Sholler GF, Hughes CF, Baird DK. Persistent ductus arteriosus in adults: a review of surgical experience with 25 patients. Med J Aust. 1991;155:233–6.PubMedGoogle Scholar
  133. 133.
    Wang JK, Liau CS, Huang JJ, Hsu KL, Lo PH, Hung JS, et al. Transcatheter closure of patent ductus arteriosus using Gianturco coils in adolescents and adults. Catheter Cardiovasc Interv. 2002;55:513–8.PubMedGoogle Scholar
  134. 134.
    Roques F, Hennequin JL, Sanchez B, Ridarch A, Rousseau H. Aortic stent-graft for patent ductus arteriosus in adults: the aortic exclusion technique. Ann Thorac Surg. 2001;71:1708–9.PubMedGoogle Scholar
  135. 135.
    Hayabuchi Y, Mori K, Kagami S. Virtual endoscopy using multidetector-row CT for coil occlusion of patent ductus arteriosus. Catheter Cardiovasc Interv. 2007;70(3):434–9.PubMedGoogle Scholar
  136. 136.
    Thai WE, Harper RW, Seneviratne S. Dynamic volume 320-slice CT in the assessment of patent ductus arteriosus for percutaneous closure. Heart. 2010;96(4):321.PubMedGoogle Scholar
  137. 137.
    Taneja K, Gulati M, Jain M, Saxena A, Das B, Rajani M. Ductal arteriosus aneurysm in the adult: role of computed tomography in diagnosis. Clin Radiol. 1997;52:231–4.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Radiology, Cardiothoracic SectionUniversity of Southern California, USC Keck HospitalLos AngelesUSA

Personalised recommendations