Skip to main content

Population Models and Neural Fields

  • Chapter
  • First Online:
  • 2357 Accesses

Abstract

Chapter describes the construction of population-based rate models under the assumption that the spiking of individual neurons is unimportant. The issue of how stochasticity at the single-cell level manifests itself at the population level is discussed, introducing topics such as balanced networks, Poisson statistics, and asynchronous states. Stochastic methods are then used to analyze bistability in a stochastic population model. Finally, the transition from spatially structured neural networks to continuum neural fields is highlighted. The latter take the form of nonlocal integrodifferential equations, in which the integral kernel represents the distribution of synaptic connections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbott, L.F., Marder, E.: Modelling small networks. In:  Koch, C.,  Segev, I. (eds.) Methods in Neuronal Modelling, pp. 361–410, 2nd edn. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Abbott, L.F., van Vresswijk, C.: Asynchronous states in networks of pulse–coupled oscillators. Phys. Rev. E 48(2), 1483–1490 (1993)

    Google Scholar 

  3. Abbott, L.F., Fahri, E., Gutmann, S.: The path integral for dendritic trees. Biol. Cybern. 66, 49–60 (1991)

    MATH  Google Scholar 

  4. Abbott, L.F., Varela, J.A., Sen, K., Nelson, S.B.: Synaptic depression and cortical gain control. Science 275, 220–224 (1997)

    Google Scholar 

  5. Aertsen, A.M.H.J., Gerstein, G.L., Habib, M.K., Palm, G.: Dynamics of neuronal firing correlation: modulation of ‘effective connectivity’. J. Neurophysiol. 61, 900–917 (1989)

    Google Scholar 

  6. Alexander, G., Crutcher, M.: Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends. Neurosci. 13, 266–271 (1990)

    Google Scholar 

  7. Allard, J., Moginler, A.: Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol. 25, 107–115 (2013)

    Google Scholar 

  8. Amari, S.: Dynamics of pattern formation in lateral inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Andersen, S.S., Bi, G.Q.: Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22, 172–179 (2000)

    Google Scholar 

  10. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J.: The Hippocampus Book. Oxford University Press, Oxford (2008)

    Google Scholar 

  11. Angelucci, A., Levitt, J.B., Walton, E.J.S., Hupe, J.M., Bullier, J., Lund, J.S.: Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002)

    Google Scholar 

  12. Antic, S.D., Zhou, W.L., Moore, A.R., Short, S.M., Ikonomu, K.D.: The decade of the dendritic NMDA spike. J. Neurosci. Res. 88, 2991–3001 (2010)

    Google Scholar 

  13. Arimura, N., Kaibuchi, K.: Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat. Rev. Neurosci 8, 194–205 (2007)

    Google Scholar 

  14. Armero, J., Casademunt, J., Ramirez-Piscina, L., Sancho, J.M.: Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise. Phys. Rev. E 58, 5494–5500 (1998)

    Google Scholar 

  15. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    MathSciNet  MATH  Google Scholar 

  16. Atay, F.M., Hutt, A.: Stability and bifurcations in neural fields with finite propagation speed and general connectivity. SIAM J. Appl. Math. 65, 644–646 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Austin, T.D.: The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Prob. 18, 1279–1325 (2006)

    MathSciNet  Google Scholar 

  18. Avoli, M., de Curtis, G.B.M.: Do interictal spikes sustain seizures and epileptogenesis. Epilepsy Currents 6, 203–207 (2006)

    Google Scholar 

  19. Baer, S.M., Rinzel, J.: Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J. Neurophysiol. 65, 874–890 (1991)

    Google Scholar 

  20. Bair, W., Koch, C., Newsome, W.T., Britten, K.H.: Power spectrum analysis of bursting cells in area MT in the behaving monkey. J. Neurosci. 14, 2870–2893 (1994)

    Google Scholar 

  21. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean field description of and propagation of chaos in recurrent multipopulation networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neuro. 2, 10 (2012)

    MathSciNet  Google Scholar 

  22. Ballesteros-Yanez, I., Benavides-Piccione, R., Elston, G.N., Yuste, R., DeFelipe, J.: Density and morphology of dendritic spines in mouse neocortex. Neurosci. 138, 403–409 (2006)

    Google Scholar 

  23. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    MathSciNet  Google Scholar 

  24. Baras, F., Mansour, M., Malek, M., Pearson, J.E.: Microscopic simulation of chemical bistability in homogeneous systems. J. Chem. Phys. 105, 8257–8261 (1996)

    Google Scholar 

  25. Bart, E., Bao, S., Holcman, D.: Modeling the spontaneous activity of the auditory cortex. J. Comput. Neurosci. 19, 357–378 (2005)

    MathSciNet  Google Scholar 

  26. Barthelemy, M., Barrat, A., Pastor-Satorras, R., Vespignani2, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92, 178701 (2004)

    Google Scholar 

  27. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002)

    Google Scholar 

  28. Bedard, C., Destexhe, A.: Macroscopic models of local field potentials the apparent 1/f noise in brain activity. Biophys. J. 96, 2589–2603 (2009)

    Google Scholar 

  29. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)

    Google Scholar 

  30. Beggs, J.M., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004)

    Google Scholar 

  31. Beggs, J.M., Timme, N.: Being critical of criticality in the brain. Front. Physiol. 3 (163), 1–14 (2012)

    Google Scholar 

  32. Ben-Ari, Y.: Developing networks play a similar melody. Trend. Neurosci. 24, 353–360 (2001)

    Google Scholar 

  33. Ben-Jacob, E., Brand, H., Dee, G., Kramer, L., Langer, J.S.: Pattern propagation in nonlinear dissipative systems. Physica D 14, 348–364 (1985)

    MathSciNet  MATH  Google Scholar 

  34. Ben-Yishai, R., Bar-Or, R.L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Nat. Acad. Sci. 92, 3844–3848 (1995)

    Google Scholar 

  35. Benda, J., Herz, A.V.M.: A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564 (2003)

    MATH  Google Scholar 

  36. Benguria, R., Depassier, M.: Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation. Comm. Math. Phys. 175, 221–227 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Bennett, M.R., Farnell, L., Gibson, W.G.: A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys. J. 89, 2235–2250 (2005)

    Google Scholar 

  38. Bennett, M.R., Farnell, L., Gibson, W.G.: A quantitative model of cortical spreading depression due to puringenic and gap-junction transmission in astrocyte networks. Biophys. J. 95, 5648–5660 (2008)

    Google Scholar 

  39. Benucci, A., Frazor, R., Carandini, M.: Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–17 (2007)

    Google Scholar 

  40. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-biological invasions and pulsating travelling fronts. J. Math. Biol. 51, 75–113 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Bernard, C., Anderson, A., Becker, A., Poolos, N.P., Beck, H., Johnston, D.: Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305, 532–535 (2004)

    Google Scholar 

  42. Berridge, M.J.: Calcium signalling and cell proliferation. Bioessays 17, 491–500 (1995)

    Google Scholar 

  43. Berridge, M.J.: Neuronal calcium signaling. Neuron 21, 13–26 (1998)

    Google Scholar 

  44. Berridge, M.J., Lipp, P., Bootman, M.D.: The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000)

    Google Scholar 

  45. Bertram, R., Smith, G.D., Sherman, A.: Modeling study of the effects of overlapping calcium microdomains on neurotransmitter release. Biophys. J. 76, 735–750 (1999)

    Google Scholar 

  46. Blake, R.: A primer on binocular rivalry, including current controversies. Brain Mind 2, 5–38 (2001)

    MathSciNet  Google Scholar 

  47. Blake, R., Logothetis, N.: Visual competition. Nat. Rev. Neurosci. 3, 1–11 (2002)

    Google Scholar 

  48. Blake, R., Wilson, H.R.: Binocular vision. Vis. Res. 51, 754–770 (2011)

    Google Scholar 

  49. Blakenship, A.G., Feller, M.B.: Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat. Rev. Neurosci. 11, 18–29 (2010)

    Google Scholar 

  50. Blasdel, G.G.: Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 3139–3161 (1992)

    Google Scholar 

  51. Blasdel, G.G., Salama, G.: Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986)

    Google Scholar 

  52. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    MathSciNet  Google Scholar 

  53. Bonhoeffer, T., Grinvald, A.: Orientation columns in cat are organized in pinwheel like patterns. Nature 364, 166–146 (1991)

    Google Scholar 

  54. Boonstra, T., Daffertshofer, A., Breakspear, M., Beek, P.: Multivariate time-frequency analysis of electromagnetic brain activity during bimanual motor learning. Neuroimage 36, 370–377 (2007)

    Google Scholar 

  55. Borisyuk, R., Kirillov, A.B.: Bifurcation analysis of a neural network model. Biol. Cybern. 66, 319–325 (1992)

    MATH  Google Scholar 

  56. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997)

    Google Scholar 

  57. Boustani, S.E., Destexhe, A.: A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Comput. 21, 46–100 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Brackley, C.A., Turner, M.S.: Random fluctuations of the firing rate function in a continuum neural field model. Phys. Rev. E 75, 041913 (2007)

    Google Scholar 

  59. Brascamp, J.W., van Ee, R., Noest, A.J., Jacobs, R.H., van den Berg, A.V.: The time course of binocular rivalry reveals a fundamental role of noise. J. Vision 6, 1244–1256 (2006)

    Google Scholar 

  60. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006)

    Google Scholar 

  61. Bressloff, P.C.: Resonantlike synchronization and bursting in a model of pulse-coupled neurons with active dendrites. J. Comput. Neurosci. 6, 237–249 (1999)

    MATH  Google Scholar 

  62. Bressloff, P.C.: Synaptically generated wave propagation in excitable neural media. Phys. Rev. Lett. 82, 2979–2982 (1999)

    Google Scholar 

  63. Bressloff, P.C.: Traveling waves and pulses in a one-dimensional network of integrate-and-fire neurons. J. Math. Biol. 40, 169–183 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Bressloff, P.C.: Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D 155, 83–100 (2001)

    MathSciNet  MATH  Google Scholar 

  65. Bressloff, P.C.: Bloch waves, periodic feature maps and cortical pattern formation. Phys. Rev. Lett. 89, 088101 (2002)

    Google Scholar 

  66. Bressloff, P.C.: Spatially periodic modulation of cortical patterns by long-range horizontal connections. Physica D 185, 131–157 (2003)

    MathSciNet  MATH  Google Scholar 

  67. Bressloff, P.C.: Pattern formation in visual cortex. In: Chow, C.C., Gutkin, B., Hansel, D., Meunier, C., Dalibard, J. (eds.) Les Houches 2003: Methods and Models in Neurophysics, pp. 477–574. Elsevier, Amsterdam (2005)

    Google Scholar 

  68. Bressloff, P.C.: Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70, 1488–1521 (2009)

    MathSciNet  MATH  Google Scholar 

  69. Bressloff, P.C.: Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics. Phys. Rev. E 85, 051903 (2010)

    MathSciNet  Google Scholar 

  70. Bressloff, P.C.: From invasion to extinction in heterogeneous neural fields. J. Math. Neurosci. 2(6), 1–27 (2012)

    MathSciNet  Google Scholar 

  71. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45, 033001 (109 pp.) (2012)

    Google Scholar 

  72. Bressloff, P.C.: Propagation of CaMKII translocation waves in heterogeneous spiny dendrites. J. Math. Biol. 66, 1499–1525 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Bressloff, P.C., Coombes, S.: Dynamics of strongly coupled spiking neurons. Neural Comput. 12, 91–129 (2000)

    Google Scholar 

  74. Bressloff, P.C., Cowan, J.D.: Amplitude equation approach to contextual effects in visual cortex. Neural Comput. 14, 493–525 (2002)

    MATH  Google Scholar 

  75. Bressloff, P.C., Cowan, J.D.: The visual cortex as a crystal. Physica D 173, 226–258 (2002)

    MathSciNet  MATH  Google Scholar 

  76. Bressloff, P.C., Folias, S.E.: Front bifurcations in an excitatory neural network. SIAM J. Appl. Math. 65, 131–151 (2005)

    Google Scholar 

  77. Bressloff, P.C., Dwyer, V.M., Kearney, M.J.: Sum-over-paths approach to diffusion on trees. J. Phys. A 29, 1881–1896 (1996)

    MathSciNet  MATH  Google Scholar 

  78. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J.: Scalar and pseudoscalar bifurcations: pattern formation on the visual cortex. Nonlinearity 14, 739–775 (2001)

    MathSciNet  MATH  Google Scholar 

  79. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.: Geometric Visual Hallucinations, Euclidean Symmetry and the Functional Architecture of Striate Cortex. Phil. Trans. Roy. Soc. Lond. B 356, 299–330 (2001)

    Google Scholar 

  80. Bressloff, P.C., Folias, S.E., Prat, A., Li, Y.X.: Oscillatory waves in inhomogeneous neural media. Phys. Rev. Lett. 91, 178101 (2003)

    Google Scholar 

  81. Bressloff, P.C., Newby, J.: Quasi-steady state analysis of motor-driven transport on a two-dimensional microtubular network. Phys. Rev. E 83, 061139 (2011)

    Google Scholar 

  82. Bressloff, P.C., Newby, J.M.: Metastability in a stochastic neural network modeled as a velocity jump Markov process. SIAM J. Appl. Dyn. Sys. 12, 1394–1435 (2013)

    MathSciNet  Google Scholar 

  83. Bressloff, P.C., Webber, M.: Neural field model of binocular rivalry waves. J. Comput. Neurosci. 32, 233–252 (2012)

    MathSciNet  Google Scholar 

  84. Bressloff, P.C., Webber, M.A.: Front propagation in stochastic neural fields. SIAM J. Appl. Dyn. Syst. 11, 708–740 (2012)

    MathSciNet  MATH  Google Scholar 

  85. Brown, R.J., Norcia, A.M.: A method for investigating binocular rivalry in real-time with the steady state VEP. Vision Res. 37, 2401–2408 (1997)

    Google Scholar 

  86. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci 8, 183–208 (2000)

    MATH  Google Scholar 

  87. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate–and–fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999)

    Google Scholar 

  88. Buckwar, E., Riedler, M.G.: An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63, 1051–1093 (2011)

    MathSciNet  MATH  Google Scholar 

  89. Buckwar, E., Riedler, M.G.: Laws of large numbers and langevin approximations for stochastic neural field equations. J. Math. Neurosci. 3(1), 1–54 (2012)

    MathSciNet  Google Scholar 

  90. Buice, M.A., Chow, C.C.: Effective stochastic behavior in dynamical systems with incomplete information. Phys. Rev. E 84, 051120 (2011)

    Google Scholar 

  91. Buice, M., Cowan, J.D.: Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E 75, 051919 (2007)

    MathSciNet  Google Scholar 

  92. Buice, M., Cowan, J.D., Chow, C.C.: Systematic fluctuation expansion for neural network activity equations. Neural Comp. 22, 377–426 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Bures, J., Buresova, O., Krivanek, J.: The Mechanisms and Applications of Leao’s Spreading Depression of Electrical Activity. Academia, Prague (1974)

    Google Scholar 

  94. Butts, D.A., Feller, M.B., Shatz, C.J., Rokshar, D.S.: Retinal waves are governed by collective network properties. J. Neurosci. 19, 3580–3593 (1999)

    Google Scholar 

  95. Butz, E.G., Cowan, J.D.: Transient potentials in dendritic systems of arbitrary geometry. Biophys. J. 14, 661–689 (1974)

    Google Scholar 

  96. Buzsaki, G.: Hippocampal sharp waves: their origin and significance. Brain Res. 398, 242–252 (1986)

    Google Scholar 

  97. Buzsaki, G.: Theta oscillations in the hippocampus. Neuron 33, 325–40 (2002)

    Google Scholar 

  98. Buzsaki, G.: Rhythms of the Brain. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  99. Byrne, J.H., Roberts, J.L.: From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. Elsevier, Amsterdam (2004)

    Google Scholar 

  100. Cai, D., Tao, L., Shelley, M., McLaughlin, D.W.: An effective kinetic representation of fluctuation–driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Natl. Acad. Sci. USA 101, 7757–7562 (2004)

    Google Scholar 

  101. Campbell, K., Gotz., M.: Radial glia: multi-purpose cells for vertebrate brain development. Trend. Neurosci. 25, 235–238 (2002)

    Google Scholar 

  102. Cantrell, R.S., Cosner, C.: Spatial Ecology Via Reaction-Diffusion Equations. Wiley, Chichester (2003)

    MATH  Google Scholar 

  103. Carlsson, A.E.: Dendritic actin filament nucleation causes traveling waves and patches. Phys. Rev. Lett. 104, 228102 (2010)

    Google Scholar 

  104. Carpenter, G.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Diff. Eqns. 23, 335–367 (1977)

    MathSciNet  MATH  Google Scholar 

  105. Casti, A.R.R., Ormutag, A., Sornborger, A., Kaplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate–and–fire–or burst neurons. Neural Comput. 14, 957–986 (2002)

    MATH  Google Scholar 

  106. Charles, A.C., Merrill, J.E., Dickson, E.R., Sanderson, M.J.: Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991)

    Google Scholar 

  107. Charles, A.C., Naus, C.C., Zhu, D., Kidder, G.M., Dirksen, E.R., Sanderson, M.J.: Intercellular calcium signaling via gap junctions in glioma cells. J. Cell. Biol. 118, 195–201 (1992)

    Google Scholar 

  108. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Diff. Eqns. 2, 125 (1997)

    MATH  Google Scholar 

  109. Chen, K.C., Nicholson, C.: Spatial buffering of potassium ions in brain extracellular space. Biophys. J. 78, 2776–2797 (2000)

    Google Scholar 

  110. Cheng, H., Lederer, W.J.: Calcium sparks. Physiol. Rev. 88, 1491–1545 (2008)

    Google Scholar 

  111. Cheng, H., Lederer, M.R., Lederer, W.J., Cannell, M.B.: Calcium sparks and waves in cardiac myocytes. Am. J. Physiol. 270, C148–C159 (1996)

    Google Scholar 

  112. Chervin, R.D., Pierce, P.A., Connors, B.W.: Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J. Neurophysiol. 60, 1695–1713 (1988)

    Google Scholar 

  113. Chialvo, D.: Emergent complex neural dynamics. Nat. Phys. 6, 744–750 (2010)

    Google Scholar 

  114. Chong, S.C., Tadin, D., Blake, R.: Endogenous attention prolongs dominance durations in binocular rivalry. J. Vision 5, 1044–1012 (2005)

    Google Scholar 

  115. Chow, C.C., Buice, M.: Path integral methods for stochastic differential equations. arXiv nlin/105966v1 (2011)

    Google Scholar 

  116. Chow, C.C., White, J.A.: Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 3013–3021 (1996)

    Google Scholar 

  117. Chu, P.H., Milton, J.G., Cowan, J.D.: Connectivity and the dynamics of integrate-and-fire neural networks. Int. J. Bif. Chaos 4, 237–243 (1994)

    MATH  Google Scholar 

  118. Chuquet, J., Hollander, L., Nimchinsky., E.A.: High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci. 27, 4036–4044 (2007)

    Google Scholar 

  119. Churchland, M.M., et al.: Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010)

    Google Scholar 

  120. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacol. 33, 18–41 (2008)

    Google Scholar 

  121. Cohen, A.H., Ermentrout, G.B., Kiermel, T., Kopell, N., Sigvardt, K.A., Williams, T.L.: Modeling of intersegmental coordination in the lamprey central pattern generator for motion. Trend. Neurosci. 15, 434–438 (1992)

    Google Scholar 

  122. Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity ( < 1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003)

    Google Scholar 

  123. Collingridge, G.L., Peineau, S., Howland, J.G., Wang, Y.T.: Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010)

    Google Scholar 

  124. Compte, A., Reig, R., Descalzo, V.F., Harvey, M.A., Puccini, G.D., Sanchez-Vives, M.V.: Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J. Neurosci. 28, 13828–13844 (2008)

    Google Scholar 

  125. Connors, B.W., Amitai, Y.: Epilespy: Models, mechanisms and concepts. In: Schwartkroin, P.A. (ed.) Generation of Epileptiform Discharge by Local Circuits of Neocortex, pp. 388–423. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  126. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Google Scholar 

  127. Coombes, S.: The effects of ion pumps on the speed of traveling waves in the fire-diffuse-fire model of Ca2+ release. Bull. Math. Biol. 63, 1–20 (2001)

    MathSciNet  Google Scholar 

  128. Coombes, S.: Dynamics of synaptically coupled integrate-and-fire-or-burst neuron. Phys. Rev. E 67, 041910 (2003)

    MathSciNet  Google Scholar 

  129. Coombes, S., Bressloff, P.C.: Solitary waves in a model of dendritic cable with active spines. SIAM J. Appl. Math. 61, 432–453 (2000)

    MathSciNet  MATH  Google Scholar 

  130. Coombes, S., Bressloff, P.C.: Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Phys. Rev. Lett. 91, 028102 (2003)

    Google Scholar 

  131. Coombes, S., Bressloff, P.C. (eds.): Bursting: The Genesis of Rhythm in the Nervous System. World Scientific Press, London (2005)

    Google Scholar 

  132. Coombes, S., Laing, C.R.: Pulsating fronts in periodically modulated neural field models. Phys. Rev. E 83, 011912 (2011)

    MathSciNet  Google Scholar 

  133. Coombes, S., Lord, G.J.: Intrinsic modulation of pulse-coupled integrate-and-fire neurons. Phys. Rev. E 56(5), 5809–5818 (1997)

    Google Scholar 

  134. Coombes, S., Owen, M.R.: Evans functions for integral neural field equations with Heaviside firing rate function. SIAM J. Appl. Dyn. Syst. 4, 574–600 (2004)

    MathSciNet  Google Scholar 

  135. Coombes, S., Owen, M.R.: Bumps, breathers, and waves in a neural network with spike frequency adaptation. Phys. Rev. Lett. 94, 148102 (2005)

    Google Scholar 

  136. Coombes, S., Schmidt, H.: Neural fields with sigmoidal firing rates: approximate solutions. Discret. Contin. Dyn. Syst. Ser. A 28, 1369–1379 (2010)

    MathSciNet  MATH  Google Scholar 

  137. Coombes, S., Timofeeva, Y.: Sparks and waves in a stochastic fire-diffue-fire model of Ca2+ release. Phy. Rev. E 68, 021915 (2003)

    MathSciNet  Google Scholar 

  138. Coombes, S., Owen, M.R., Smith, G.D.: Mode-locking in a periodically forced integrate-and-fire-or-burst neuron model. Phys. Rev. E 64, 041914 (2001)

    Google Scholar 

  139. Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. SIAM J. Appl. Dyn. Sys. 5, 552–574 (2003)

    Google Scholar 

  140. Coombes, S., Hinch, R., Timofeeva, Y.: Receptors, sparks and waves in a fire-diffuse-fire framework for Ca2+ release. Prog. Biophys. Mol. Biol. 85, 197–216 (2004)

    Google Scholar 

  141. Coombes, S., Timofeeva, Y., Svensson, C.M., Lord, G.J., Josic, K., Cox, S.J., Colbert, C.M.: Branching dendrites with resonant membrane: a “sum-over-trips” approach. Biol. Cybern. 97, 137–149 (2007)

    MathSciNet  MATH  Google Scholar 

  142. Coombes, S., Venkov, N.A., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007)

    MathSciNet  Google Scholar 

  143. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990)

    Google Scholar 

  144. Dahlem, M.A., Chronicle, E.P.: A computational perspective on migraine aura. Prog. Neurobiol. 74, 351–361 (2004)

    Google Scholar 

  145. Dahlem, M.A., Muller, S.C.: Migraine aura dynamics after reverse retinotopic mapping of weak excitation waves in the primary visual cortex. Biol. Cybern. 88, 419–424 (2003)

    MATH  Google Scholar 

  146. Dale, N.: Dynamic ATP signalling and neural development. J. Physiol. 586, 2429–2436 (2008)

    Google Scholar 

  147. Deco, G., Jirsa, V., Robinson, P.A., Breakspear, M., Friston, K.: The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008)

    Google Scholar 

  148. Deco, G., Jirsa, V.K., McIntosh., A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011)

    Google Scholar 

  149. Delaney, K.R., Galperin, A., Fee, M.S., Flores, J.A., Gervais, R., Tank, D.W., Kleinfeld, D.: Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc. Natl. Acad. Sci. USA 91, 669–673 (1994)

    Google Scholar 

  150. Delorme, V., Machacek, M., DerMardirossian, C., Anderson, K.L., Wittmann, T., Hanein, D., Waterman-Storer, C., Danuser, G., Bokoch, G.M.: Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell. 13, 646–662 (2007)

    Google Scholar 

  151. Derkach, V., Barria, A., Soderling, T.R.: Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionate type glutamate receptors. Proc. Nat. Acad. Sci. (USA) 96, 3269–3274 (1999)

    Google Scholar 

  152. Destexhe, A., Contreras., D.: Neuronal computations with stochastic network states. Science 314, 85–90 (2006)

    MathSciNet  MATH  Google Scholar 

  153. Destexhe, A., Sejnowski, T.J.: Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations. Oxford University Press, Oxford (2001)

    Google Scholar 

  154. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Synthesis of models for excitable membranes synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195–231 (1994)

    Google Scholar 

  155. Difato, F., Tsushima, H., Pesce, M., Benfenati, F., Blau, A., Chieregatti, E.: The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF. Sci. Rep. 1 (183), 1–18 (2011)

    Google Scholar 

  156. Dockery, J.D., Keener, J.P.: Diffusive effects on dispersion in excitable media. SIAM J. Appl. Dyn. 49, 539–566 (1989)

    MathSciNet  MATH  Google Scholar 

  157. Doubrovinski, K., Kruse, K.: Cytoskeletal waves in the absence of molecular motors. Europhys. Lett. 83, 18003 (2008)

    Google Scholar 

  158. van Drongelen, W., Lee, H.C., Stevens, R.L., Hereld, M.: Propagation of seizure-like activity in a model of neocortex. J. Clin. Neurophysiol. 24, 182–188 (2007)

    Google Scholar 

  159. Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R.J., Huerta, R., Tsimring, L., Soltesz, I.: Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J. Neurophysiol. 97, 1566–1587 (2007)

    Google Scholar 

  160. Dykman, M.I., Mori, E., Ross, J., Hunt, P.M.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. A 100, 5735–5750 (1994)

    Google Scholar 

  161. Earnshaw, B.A., Bressloff, P.C.: Diffusion-activation model of CaMKII translocation waves in dendrites. J. Comput. Neurosci. 28, 77–89 (2010)

    MathSciNet  Google Scholar 

  162. Ebert, U., van Saarloos, W.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146, 1–99 (2000)

    MathSciNet  MATH  Google Scholar 

  163. Edwards, J.R., Gibson, W.G.: A model for Ca2+ waves in networks of glial cells incorporating both intracellular and extracellular communication pathways. J. Theor. Biol. 263, 45–58 (2010)

    Google Scholar 

  164. Elgart, V., Kamenev, A.: Rare event statistics in reaction–diffusion systems. Phys. Rev. E 70, 041106 (2004)

    MathSciNet  Google Scholar 

  165. Elmer, C.E., Vleck, E.S.V.: Analysis and computation of traveling waves solutions of bistable differential-difference equations. Nonlinearity 12, 771–798 (1999)

    MathSciNet  MATH  Google Scholar 

  166. Ermentrout, G.B.: The behaviour of rings of coupled oscillators. Journal of Mathematical Biology 23, 55–74 (1985)

    MathSciNet  MATH  Google Scholar 

  167. Ermentrout, G.B.: The analysis of synaptically generated travelling waves. J. Comput. Neurosci. 5, 191–208 (1998)

    MATH  Google Scholar 

  168. Ermentrout, G.B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phy. 61, 353–430 (1998)

    Google Scholar 

  169. Ermentrout, G.B., Cowan, J.: A mathematical theory of visual hallucination patterns. Bio. Cybern. 34, 137–150 (1979)

    MathSciNet  MATH  Google Scholar 

  170. Ermentrout, G.B., Kleinfeld, D.: Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29, 33–44 (2001)

    Google Scholar 

  171. Ermentrout, G.B., Kopell, N.: Frequency plateaus in a chain of weakly coupled oscillators. SIAM J. Appl. Math. 15, 215–237 (1984)

    MathSciNet  MATH  Google Scholar 

  172. Ermentrout, G.B., McLeod, J.B.: Existence and uniqueness of travelling waves for a neural network. Proc. Roy. Soc. Edin. A 123, 461–478 (1993)

    MathSciNet  MATH  Google Scholar 

  173. Ermentrout, G.B., Terman, D.: Mathematical Foundations of Neuroscience. Springer, Berlin (2010)

    MATH  Google Scholar 

  174. Ermentrout, G.B., Jalics, J.Z., Rubin, J.E.: Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM J. Appl. Math. 70, 3039–3064 (2010)

    MathSciNet  MATH  Google Scholar 

  175. Escudero, C., Kamanev, A.: Switching rates of multistep reactions. Phys. Rev. E 79, 041149 (2009)

    Google Scholar 

  176. Escudero, C., Rodriguez, J.A.: Persistence of instanton connections in chemical reactions with time–dependent rates. Phys. Rev. E 77, 011130 (2008)

    MathSciNet  Google Scholar 

  177. Evans, J.: Nerve axon equations IV: The stable and unstable impulse. Ind. Univ. Math. J. 24, 1169–1190 (1975)

    MATH  Google Scholar 

  178. Evans, L.C., Sougandis, P.E.: A PDE approach to geometric optics for certain semilinear parabolic equations. Ind. Univ. Math. J. 38, 141–172 (1989)

    MATH  Google Scholar 

  179. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292 (2008)

    Google Scholar 

  180. Falcke, M.: On the role of stochastic channel behavior in intracellular Ca2+ dynamics. Biophys. J. 84, 42–56 (2003)

    Google Scholar 

  181. Falcke, M.: Reading the patterns in living cells - the physics of Ca2+ signaling. Adv. Phys. 53, 255–440 (2004)

    Google Scholar 

  182. Falcke, M., Tsimiring, L., Levine, H.: Stochastic spreading of intracellular Ca2+ release. Phys. Rev. E 62, 2636–2643 (2000)

    Google Scholar 

  183. Fath, G.: Propagation failure of traveling waves in a discrete bistable medium. Physica D 116, 176–190 (1998)

    MathSciNet  MATH  Google Scholar 

  184. Faugeras, O., Touboul, J., Cessac, B.: A constructive mean–field analysis of multi–population neural networks with random synaptic weights and stochastic inputs. Frontiers in Comp. Neurosci. 3, 1–28 (2009)

    Google Scholar 

  185. Faugeras, O., Veltz, R., Grimbert, F.: Persistent neural states: Stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks. Neural Comput. 21, 147–187 (2009)

    MathSciNet  MATH  Google Scholar 

  186. Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G.: Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004)

    Google Scholar 

  187. Fellin, T., Pozzan, T., Carmignoto., G.: Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J. Biol. Chem. 281, 4274–4284 (2006)

    Google Scholar 

  188. Ferster, D., Miller, K.: Neural mechanisms of orientation selectivity in the visual cortex. Annual review of neuroscience 23(1), 441–471 (2000)

    Google Scholar 

  189. Fianco, T.A., McCarthy, K.D.: Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal cells. J. Neurosci. 24, 722–732 (2004)

    Google Scholar 

  190. Firth, S.I., Wang, C.T., Feller, M.B.: Retinal waves: mechanisms and function in visual system development. Cell Calcium 37, 425–432 (2005)

    Google Scholar 

  191. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugenics 7, 353–369 (1937)

    Google Scholar 

  192. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1960)

    Google Scholar 

  193. Fivaz, M., Bandara, S., Inoue, T., Meyer, T.: Robust neuronal symmetry-breaking by Ras-triggered local positive feedback. Curr. Biol. 18, 44–50 (2008)

    Google Scholar 

  194. Flynn, K.C., Pak, C.W., Shaw, A.E., Bradke, F., Bamburg, J.R.: Growth cone-like waves transport actin and promote axonogenesis and neurite branching. Dev. Neurobiol. 69, 761–779 (2009)

    Google Scholar 

  195. Fogelson, A., Zucker, R.S.: Presynaptic calcium diffusion from various arrays of single channels. implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985)

    Google Scholar 

  196. Folias, S.E., Bressloff, P.C.: Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst. 3, 378–407 (2004)

    MathSciNet  MATH  Google Scholar 

  197. Folias, S.E., Bressloff, P.C.: Breathers in two–dimensional neural media. Phys. Rev. Lett. 95, 208107 (2005)

    Google Scholar 

  198. Folias, S.E., Bressloff, P.C.: Stimulus–locked traveling pulses and breathers in an excitatory neural network. SIAM J. Appl. Math. 65, 2067–2092 (2005)

    MathSciNet  MATH  Google Scholar 

  199. Fox, R., Rasche, F.: Binocular rivalry and reciprocal inhibition. Attention Percept. Psychophys. 5(4), 215–217 (1969)

    Google Scholar 

  200. Fox, R.F., Lu, Y.N.: Emergent collective behavior in large numbers of globally coupled independent stochastic ion channels. Phys. Rev. E 49, 3421–3431 (1994)

    Google Scholar 

  201. Franci, A., Drion, G., Sepulchre, R.: An organizing center in a planar model of neuronal excitability. SIAM J. Appl. Dyn. Sys. 11, 1698–1722 (2013)

    MathSciNet  Google Scholar 

  202. Franks, K.M., Sejnowski, T.J.: Complexity of calcium signaling in synaptic spines. Bioessays 24, 1130–1144 (2002)

    Google Scholar 

  203. Freidlin, M.I.: Limit theorems for large deviations and reaction-diffusion equations. Ann. Prob. 13, 639–675 (1985)

    MathSciNet  MATH  Google Scholar 

  204. Freidlin, M.I.: Geometric optics approach to reaction–diffusion equations. SIAM J. Appl. Math. 46, 222–232 (1986)

    MathSciNet  MATH  Google Scholar 

  205. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1984)

    MATH  Google Scholar 

  206. Friedman, A., Craciun, G.: A model of intracellular transport of particles in an axon. J. Math. Biol. 51, 217–246 (2005)

    MathSciNet  MATH  Google Scholar 

  207. Friedman, A., Hu, B.: Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems. Ind. Univ. Math. J. 56, 2133–2158 (2007)

    MathSciNet  MATH  Google Scholar 

  208. Fusi, S., Drew, P.J., Abbott, L.F.: Cascade models of synaptically stored memories. Neuron 45, 599–611 (2005)

    Google Scholar 

  209. Garcia-Ojalvo, J., Sancho, J.M.: External fluctuations in a pattern-forming instability. Phys. Rev. E 53, 5680–5689 (1996)

    Google Scholar 

  210. Gardiner, C.W.: Handbook of Stochastic Methods, 4th edn. Springer, Berlin (2009)

    Google Scholar 

  211. Gardner-Medwin, A.R.: Analysis of potassium dynamics in mammalian brain tissue. J. Physiol. (Lond) 335, 393–462 (1983)

    Google Scholar 

  212. Gartner, J., Freidlin, M.I.: On the propagation of concentration waves in periodic and random media. Soviet Math. Dokl. 20, 1282–1286 (1979)

    Google Scholar 

  213. Gerstner, W., van Hemmen, J.L.: Coherence and incoherence in a globally coupled ensemble of pulse–emitting units. Phys. Rev. Lett. 71(3), 312–315 (1993)

    Google Scholar 

  214. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  215. Gerstner, W., van Hemmen, J.L., Cowan, J.D.: What matters in neuronal locking? Neural Comput. 8, 1689–1712 (1996)

    Google Scholar 

  216. Gilbert, C.D.: Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992)

    Google Scholar 

  217. Gilbert, C.D., Das, A., Ito, M., Kapadia, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Nat. Acad. Sci. USA 93, 615–622 (1996)

    Google Scholar 

  218. Gilbert, C.D., Wiesel, T.N.: Clustered intrinsic connections in cat visual cortex. J. Neurosci. 3, 1116–1133 (1983)

    Google Scholar 

  219. Gilboa, G., Chen, R., Brenner, N.: History–dependent multiple-time-scale dynamics in a single-neuron model. J. Neurosci. 25, 6479–6489 (2005)

    Google Scholar 

  220. Ginzburg, I., Sompolinsky, H.: Theory of correlations in stochastic neural networks. Phys. Rev. E 50, 3171–3191 (1994)

    Google Scholar 

  221. Glass, L., Mackey, M.C.: From Clocks to Chaos. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  222. Godfrey, K.B., Eglen, S.J.: Theoretical models of spontaneous activity generation and propagation in the developing retina. Mol. Biosyst. 5, 1527–1535 (2009)

    MathSciNet  Google Scholar 

  223. Godfrey, K.B., Swindale, N.V.: Retinal wave behavior through activity-dependent refractory periods. PLoS Comp. Biol. 3 (11), 2408–2420 (2007)

    Google Scholar 

  224. Goel, P., Sneyd, J., Friedman, A.: Homogenization of the cell cytoplasm: the calcium bidomain equations. SIAM Nultiscal. Model Simul. 5, 1045–1062 (2006)

    MathSciNet  MATH  Google Scholar 

  225. Goldberg, J.L.: How does an axon grow? Genes Dev. 17, 941–958 (2003)

    Google Scholar 

  226. Golding, N.L., Staff, N.P., Spruston, N.: Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002)

    Google Scholar 

  227. Goldwyn, J.H., Shea-Brown, E.: The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Comp. Biol. 7 (11), e1002247 (2011)

    MathSciNet  Google Scholar 

  228. Golomb, D., Amitai, Y.: Propagating neuronal discharges in neocortical slices: Computational and experimental study. J. Neurophysiol. 78, 1199–1211 (1997)

    Google Scholar 

  229. Golomb, D., Ermentrout, G.: Bistability in pulse propagation in networks of excitatory and inhibitory populations. Phys. Rev. Lett. 86, 4179–4182 (2001)

    Google Scholar 

  230. Golomb, D., Ermentrout, G.B.: Continuous and lurching traveling waves in neuronal networks with spatially-decaying connectivity and delay. Proc. Natl. Acad Sci. USA 96, 13480–13485 (1999)

    Google Scholar 

  231. Golomb, D., Rinzel, J.: Clustering in globally coupled inhibitory neurons. Physica D 72, 259–282 (1994)

    MATH  Google Scholar 

  232. Golomb, D., Wang, X.J., Rinzel, J.: Propagation of spindle waves in a thalamic slice model. J. Neurophysiol. 75, 750–769 (1996)

    Google Scholar 

  233. Gomez, T.M., Spitzer, N.C.: Regulation of growth cone behavior by calcium: New dynamics to earlier perspectives. J. Neurobiol. 44, 174–183 (1999)

    Google Scholar 

  234. Gomez, T.M., Zheng, J.Q.: The molecular basis for calcium-dependent axon pathfinding. Nat. Rev. Neurosci. 7, 115–125 (2006)

    Google Scholar 

  235. Gonzalez-Billault, C., Munoz-Llancao, P., Henriquez, D.R., Wojnacki, J., Conde, C., Caceres, A.: The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton 69, 464–485 (2012)

    Google Scholar 

  236. Gordon, G.R., Baimoukhametova, D.V., Hewitt, S.A., Kosala, W.R.A., Rajapaksha, J.S., Fisher, T.E., Bains, J.S.: Noropinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat. Neurosci. 8, 1078–1086 (2005)

    Google Scholar 

  237. Gorji, A.: Spreading depression: A review of the clinical relevance. Brain Res. Revs. 38, 33–60 (2001)

    Google Scholar 

  238. Gourley, S.A.: Travelling front solutions of a nonlocal fisher equation. J. Math Biol. 41, 272–284 (2000)

    MathSciNet  MATH  Google Scholar 

  239. Grannan, E.R., Kleinfeld, D., Sompolinsky, H.: Stimulus dependent synchronization of neuronal assemblies. Neural Comput. 5, 550–569 (1993)

    Google Scholar 

  240. Gray, W.G., Lee, P.C.Y.: On the theorems for local volume averaging of multiphase systems. Int. J. Multiphase Flow 3, 333–340 (1977)

    MATH  Google Scholar 

  241. Greenstein, J.L., Hinch, R., Winslow, R.L.: Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90, 77–91 (2006)

    Google Scholar 

  242. Grindrod, P.: Patterns and Waves: The Theory and Application of Reaction-Diffusion Equations. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  243. Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R.: Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14, 2545–2568 (1994)

    Google Scholar 

  244. Groff, J.R., DeRemigio, H., Smith, G.D.: Stochastic methods in neuroscience, chap. 2. In: Markov Chain Models of Ion Channels and Calcium Release Sites, pp. 29–64. Oxford University Press, Oxford (2009)

  245. Gu, X., Olson, E.C., Spitzer, N.: Spontaneous neuronal calcium spikes and waves during early differentiation.. J. Neurosci. 14, 6325–6335 (1994)

    Google Scholar 

  246. Gu, X., Spitzer, N.C.: Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients. Dev. Neurosci. 19, 33–41 (1997)

    Google Scholar 

  247. Guan, C.B., Xu, H.T., Jin, M., Yuan, X.B., Poo, M.M.: Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by Slit-2. Cell 129, 385–395 (2007)

    Google Scholar 

  248. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  249. Guthrie, P.B., Knappenberger, J., Segal, M., Bennett, M.V.,, Charles, A.C., Kater, S.B.: ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999)

    Google Scholar 

  250. Haas, B., Schipke, C.G., Peters, O., Sohl, G., Willecke, K., Kettenmann, H.: Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb. Cortex 16, 237–246 (2006)

    Google Scholar 

  251. Hagberg, A., Meron, E.: Pattern formation in non–gradient reaction–diffusion systems: the effects of front bifurcations. Nonlinearity 7, 805–835 (1994)

    MathSciNet  MATH  Google Scholar 

  252. Hagberg, A., Meron, E., Rubinstein, I., Zaltzman., B.: Controlling domain patterns far from equilibrium. Phys. Rev. Lett. 76, 427–430 (1996)

    Google Scholar 

  253. Halassa, M.M., Fellin, T., Haydon, P.G.: The tripartite synapse: roles for gliotransmission in health and disease. Trend. Mol. Med. 13, 54–63 (2007)

    Google Scholar 

  254. Hall, A.: Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998)

    Google Scholar 

  255. Han, F., Caporale, N., Dan, Y.: Reverberation of recent visual experience in spontaneous cortical waves. Neuron 60, 321–327 (2008)

    Google Scholar 

  256. Hanggi, P., Grabert, H., Talkner, P., Thomas, H.: Bistable systems: master equation versus Fokker–Planck modeling. Z. Physik B 28, 135 (1984)

    Google Scholar 

  257. Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    MathSciNet  Google Scholar 

  258. Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7, 2307–2337 (1995)

    Google Scholar 

  259. Hansen, M., Boltano, S., Dirksen, E.R., Sanderson, M.J.: Intercellular calcium signaling induced by extracellular adenosine 5-triphosphate and mechanical stimulation in airway epithelial cells. J. Cell. Sci. 106, 995–1004 (1993)

    Google Scholar 

  260. Hanson, M.G., Landmesser, L.T.: Chracaterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J. Neurosci. 23, 587–600 (2003)

    Google Scholar 

  261. Hanson, P.I., Meyer, T., Stryer, L., Schulman, H.: Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signal. Neuron 12, 943–956 (1994)

    Google Scholar 

  262. Hardy, J.: A hundred years of Alzheimer’s disease research. Neuron 52, 3–13 (2006)

    Google Scholar 

  263. Harper, J.D., Lansbury, P.T. Jr.: Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997)

    Google Scholar 

  264. Harris, T.E.: The theory of branching processes. Dover, New York (1989)

    Google Scholar 

  265. Harris-White, M.E., Zanotti, S.A., Frautschy, S.A., Charles, A.C.: Spiral intercellular calcium waves in hippocampal slice cultures. J. Neurophysiol. 79, 1045–1052 (1998)

    Google Scholar 

  266. Hassinger, T.D., Guthrie, P.B., Atkinson, P.B., Bennett, M.V., Kater, S.B.: An extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl. Acad. Sci. USA 93, 13268–13273 (1996)

    Google Scholar 

  267. Hastings, S.P.: The existence of progressive wave solutions to the Hodgkin-Huxley equations. Arc. Rat. Mech. Anal. 60, 229–257 (1975)

    MathSciNet  Google Scholar 

  268. Haydon, P.G.: Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2000)

    Google Scholar 

  269. Heitmann, S., Gong, P., Breakspear, M.: A computational role for bistability and traveling waves in motor cortex. Front. Comp. Neurosci. 6 (67), 1–15 (2012)

    Google Scholar 

  270. von Helmholtz, H.: Treatise on physiological optics. Dover, New York (1866)

    Google Scholar 

  271. Hennig, M.H., Adams, C., Willshaw, D., Sernagor, E.: Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J. Neurosci. 29, 1077–1086 (2009)

    Google Scholar 

  272. Hill, S., Tononoi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005)

    Google Scholar 

  273. Hill, A.A.V., Masino, M.A., Calabrese, R.L.: Intersegmental coordination of rhythmic motor patterns. J. Neurophysiol. 90, 531–538 (2003)

    Google Scholar 

  274. Hillen, T., Othmer, H.: The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)

    MathSciNet  MATH  Google Scholar 

  275. Hinch, E.J.: Perturbation Methods. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  276. Hinch, R.: A mathematical analysis of the generation and termination of calcium sparks. Biophys. J. 86, 1293–1307 (2004)

    Google Scholar 

  277. Hinch, R., Chapman, S.J.: Exponentially slow transitions on a Markov chain: the frequency of calcium sparks. Eur. J. Appl. Math. 16, 427–446 (2005)

    MathSciNet  MATH  Google Scholar 

  278. Hirsch, J.D., Gilbert, C.D.: Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Physiol. Lond. 160, 106–154 (1991)

    Google Scholar 

  279. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  280. Hofer, T., Politi, A., Heinrich, R.: Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys. J. 80, 75–87 (2001)

    Google Scholar 

  281. Hofer, T., Venance, L., Giaume, C.: Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci. 22, 4850–4859 (2002)

    Google Scholar 

  282. Holcman, D., Tsodyks, M.: The emergence of up and down states in cortical networks. PLoS Comp. Biol. 2(3), 0174–0181 (2006)

    Google Scholar 

  283. Holcman, D., Schuss, Z., Korkotian, E.: Calcium dynamics in dendritic spines and spine motility. Biophys. J. 87, 81–91 (2004)

    Google Scholar 

  284. Holmes, B.B., Diamond, M.I.: Cellular mechanisms of protein aggregate propagation. Curr. Opin. Neuro. 25, 721–726 (2012)

    Google Scholar 

  285. Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75, 17–29 (1994)

    Google Scholar 

  286. Holmes, W.R., Carlsson, A.E., Edelstein-Keshet, L.: Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Phys. Biol. 9, 046005 (2012)

    Google Scholar 

  287. Hoogland, T.M., Kuhn, B., Gobel, W., Huang, W., Nakai, J., Helmchen, F., Flint, J., Wang, S.S.: Radially expanding transglial calcium waves in the intact cerebellum. Proc. Natl. Acad. Sci. USA 106, 3496–3501 (2009)

    Google Scholar 

  288. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two–state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Google Scholar 

  289. Horton, A.C., Ehlers, M.D.: Neuronal polarity and trafficking. Neuron 40, 277–295 (2003)

    Google Scholar 

  290. Houweling, A.R., Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15, 834–845 (2005)

    Google Scholar 

  291. Hsu, D., Tang, A., Hsu, M., Beggs, J.M.: Simple spontaneously active Hebbian learning model: homeostatsis of activity and connectivity, and consequences for learining and epileptogenesis. Phys. Rev. E 76, 041909 (2007)

    MathSciNet  Google Scholar 

  292. Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schiff, S.J., Wu, J.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24, 9897–9902 (2004)

    Google Scholar 

  293. Hubel, D.H., Wiesel, T.N.: Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–294 (1974)

    Google Scholar 

  294. Hubel, D.H., Wiesel, T.N.: Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–306 (1974)

    Google Scholar 

  295. Hudson, A., Schulman, H.: Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473–510 (2002)

    Google Scholar 

  296. Hutt, A., Bestehorn, M., Wennekers, T.: Pattern formation in intracortical neuronal fields. Network 14, 351–368 (2003)

    Google Scholar 

  297. Hutt, A., Longtin, A., Schimansky-Geier, L.: Additive noise-induces Turing transitions in spatial systems with application to neural fields and the Swift-Hohenberg equation. Physica D 237, 755–773 (2008)

    MathSciNet  MATH  Google Scholar 

  298. Iacobas, D.A., Suadicani, S.O., Spray, D.C., Scemes, E.: A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. Biophys. J. 90, 24–41 (2006)

    Google Scholar 

  299. Idan, S., Rinzel, J., Gordon, M.S. (eds.): The Theoretical Foundations of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries. MIT Press, Cambridge (1995)

    Google Scholar 

  300. Invernizzi, G., Papaleo, E., Sabate, R., Ventura, S.: Protein aggregation: Mechanisms and functional consequences. Int. J. Biochem. Cell Biol. 44, 1541–1554 (2012)

    Google Scholar 

  301. Izhikevich, E.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2006)

    Google Scholar 

  302. Jacobs, K.: Stochastic Processes for Physicists. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  303. Jaffe, D.B., Brown, T.H.: Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J. Neurophysiol. 72, 471–474 (1994)

    Google Scholar 

  304. Jahr, C., Stevens, C.: A quantitative description of NMDA receptor-channel kinetic behavior. J. Neurosci. 10, 1830–1837 (1990)

    Google Scholar 

  305. Jilkine, A., Maree, A.F.M., Edelstein-Keshet, L.: Mathematical model for spatial segregation of the Rho-family GTPases based on inhibitory crosstalk. Bull. Math. Biol. 68, 1169–1211 (2007)

    MathSciNet  Google Scholar 

  306. Jin, D.Z., Dragoi, V., Sur, M., Seung, H.S.: Tilt aftereffect and adaptation-induced changes in orientation tuning and visual cortex. J. Neurosci. 94, 4038–4050 (2005)

    Google Scholar 

  307. Jirsa, V.K., Haken, H.: A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99, 503–526 (1997)

    MATH  Google Scholar 

  308. Jirsa, V.K., Kelso, J.A.S.: Spatiotemporal pattern formation in neural systems with heterogeneous topologies. Phys. Rev. E 62, 8462–8465 (2000)

    Google Scholar 

  309. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)

    Google Scholar 

  310. Kang, M., Othmer, H.G.: Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19, 037116 (2009)

    Google Scholar 

  311. Kang, N., Xu, J., Xu, Q., Nedergaard, M., Kang, J.S.: Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neuron. J. Neurophysiol. 94, 4121–4130 (2005)

    Google Scholar 

  312. Kang, M., Heeger, D.J., Blake, R.: Periodic perturbations producing phase-locked fluctuations in visual perception. J. Vision 9(2):8, 1–12 (2009)

    Google Scholar 

  313. Kang, M., Lee, S.H., Kim, J., Heeger, D.J., Blake, R.: Modulation of spatiotemporal dynamics of binocular rivalry by collinear facilitation and pattern-dependent adaptation. J. Vision 10(11):3, 1–15 (2010)

    Google Scholar 

  314. Kapitula, T., Kutz, N., Sandstede, B.: The Evans function for nonlocal equations. Ind. Univ. Math. J. 53, 1095–1126 (2004)

    MathSciNet  MATH  Google Scholar 

  315. Katz, L.C., Shatz, C.J.: Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Google Scholar 

  316. Keener, J.P.: Waves in excitable media. SIAM J. Appl. Math. 39, 528–548 (1981)

    MathSciNet  Google Scholar 

  317. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math 31, 269–276 (1987)

    Google Scholar 

  318. Keener, J.P.: Homogenization and propagation in the bistable equation. Physica D 136, 1–17 (2000)

    MathSciNet  MATH  Google Scholar 

  319. Keener, J.P.: Propagation of waves in an excitable medium with discrete release sites. SIAM J. Appl. Math. 61, 317–314 (2000)

    MathSciNet  MATH  Google Scholar 

  320. Keener, J.P.: Stochastic calcium oscillations. Math. Med. Biol. 23, 1–25 (2006)

    MATH  Google Scholar 

  321. Keener, J.P., Newby, J.M.: Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phy. Rev. E 84, 011918 (2011)

    Google Scholar 

  322. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer, New York (2009)

    Google Scholar 

  323. Keener, J.P., Hoppensteadt, F.C., Rinzel, J.: Integrate–and–fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. 41(3), 503–517 (1981)

    MathSciNet  Google Scholar 

  324. Keizer, J., Smith, G.D.: Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys. Chem. 72, 87–100 (1998)

    Google Scholar 

  325. Keizer, J., Smith, G.D., Ponce-Dawson, S., Pearson, J.E.: Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J. 75, 595–600 (1998)

    Google Scholar 

  326. Khazipov, R., Luhmann, H.J.: Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trend. Neurosci. 29, 414–419 (2006)

    Google Scholar 

  327. Khovanov, I.A., Polovinkin, A.V., Luchinsky, D.G., McClintock, P.V.E.: Noise-induced escape in an excitable system. Phys. Rev. E 87, 032116 (2013)

    Google Scholar 

  328. Kilpatrick, Z.P., Bressloff, P.C.: Binocular rivalry in a competitive neural network with synaptic depression. SIAM J. Appl. Dyn. Syst. 9, 1303–1347 (2010)

    MathSciNet  MATH  Google Scholar 

  329. Kilpatrick, Z.P., Bressloff, P.C.: Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D 239, 547–560 (2010)

    MathSciNet  MATH  Google Scholar 

  330. Kilpatrick, Z.P., Bressloff, P.C.: Spatially structured oscillations in a two-dimensional neuronal network with synaptic depression. J. Comp. Neurosci. 28, 193–209 (2010)

    MathSciNet  Google Scholar 

  331. Kilpatrick, Z.P., Bressloff, P.C.: Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. Physica D 239, 1048–1060 (2010)

    MathSciNet  MATH  Google Scholar 

  332. Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C.: Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM J. Appl. Dyn. Syst. 7, 161–185 (2008)

    MathSciNet  MATH  Google Scholar 

  333. Kim, H.G., Connors, B.W.: Apical dendrites of the neocortex: correlation between sodium and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993)

    Google Scholar 

  334. Kim, U., Bal, T., McCormick, D.A.: Spindle waves are propagating synchronized oscillations in the ferret LGN in vitro. J. Neurophysiol. 74, 1301–1323 (1995)

    Google Scholar 

  335. Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N.: Modeling biological invasions into periodically fragmented environments. Theor. Popul. Biol. 64, 291–302 (2003)

    MATH  Google Scholar 

  336. Kishimoto, K., Amari, S.: Existence and stability of local excitations in homogeneous neural fields. J. Math. Biol. 7, 303–318 (1979)

    MathSciNet  MATH  Google Scholar 

  337. Kistler, W.M., Seitz, R., van Hemmen, J.L.: Modeling collective excitations in cortical tissue. Physica D 114, 273–295 (1998)

    MATH  Google Scholar 

  338. Kleinfeld, D., Delaney, K.R., Fee, M.S., Flores, J.A., Tank, D.W., Gelperin, A.: Dynamics of propagating waves in the olfactory network of a terrestrial mollusc: an electrical and optical study. J. Neurophysiol. 72, 1402–1419 (1994)

    Google Scholar 

  339. Knessl, C., Mangel, M., Matkowsky, B.J., Schuss, Z., Tier, C.: An asymptotic solution of the Kramers-Moyal equation and first passage time problems for Markov jump processes. Phys. Rev. E 29, 3359–3369 (1984)

    MathSciNet  Google Scholar 

  340. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: An asymptotic theory of large deviations for Markov jump processes. SIAM J. Appl. Math. 46, 1006–1028 (1985)

    MathSciNet  Google Scholar 

  341. Koch, C.: Cable theory in neurons with active, linearized membranes. Biol. Cybern. 50, 15–33 (1984)

    Google Scholar 

  342. Koch, C.: Biophysics of Computation. Oxford University Press, New York (1999)

    Google Scholar 

  343. Koch, C., Zador, A.M.: The function of dendritic dendritic spines. devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422 (1993)

    Google Scholar 

  344. Koch, C., Poggio, T., Torre, V.: Nonlinear interactions in a dendritic tree: localization, timing and role in information processing. Proc. Nat. Acad. Sci. (USA) 80, 2799–2802 (1983)

    Google Scholar 

  345. Kolmogorff, A., Petrovsky, I., Piscounoff, N.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  346. Konur, S., Rabinowitz, D., Fenstermaker, V.L., Yuste, R.: Systematic regulation of spine sizes and densities in pyramidal neurons. J. Neurobiol. 56, 95–112 (2003)

    Google Scholar 

  347. Kopell, N., Ermentrout, G.B.: Symmetry and phase-locking in chains of weakly coupled oscillators. Comm. Pure Appl. Math. 39, 623–660 (1986)

    MathSciNet  MATH  Google Scholar 

  348. Kramer, M.A., Cash, S.S.: Epilepsy as a disorder of cortical network organization. Neuroscientist 18, 360–372 (2012)

    Google Scholar 

  349. von Krosigk, M., Bal, T., McCormick, D.: Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993)

    Google Scholar 

  350. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, New-York (1984)

    MATH  Google Scholar 

  351. Kurtz, T.G.: Limit theorems for a sequence of jump Markov processes approximating ordinary differential equations. J. Appl. Prob. 8, 344–356 (1971)

    MathSciNet  MATH  Google Scholar 

  352. Kurtz, T.G.: Limit theorems and diffusion approximations for density dependent Markov chains. Math. Prog. Stud. 5, 67 (1976)

    MathSciNet  Google Scholar 

  353. Lago-Fernandez, L.F., Huerta, R., Corbacho, F., Siguenza, J.A.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758–2761 (2000)

    Google Scholar 

  354. Laing, C.R.: Spiral waves in nonlocal equations. SIAM J. Appl. Dyn. 4, 588–606 (2005)

    MathSciNet  MATH  Google Scholar 

  355. Laing, C.R., Chow, C.C.: A spiking neuron model for binocular rivalry. J. Comput. Neurosci. 12, 39–53 (2002)

    Google Scholar 

  356. Laing, C.R., Troy, W.C.: PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst. 2, 487–516 (2003)

    MathSciNet  MATH  Google Scholar 

  357. Lam, Y.W., Cohen, L.B., Wachowiak, M., Zochowski, M.R.: Odors elicit three different oscillations in the turtle olfactory bulb. J. Neurosci. 20, 749–762 (2000)

    Google Scholar 

  358. Lance, J.W.: Current concepts of migraine pathogenesis. Neurology 43, 11–15 (1993)

    Google Scholar 

  359. Largo, C., Cuevas, P., Somjen, G., Rio, R.M., Herreras, O.: The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuronal survival. J. Neurosci. 16, 1219–1229 (1996)

    Google Scholar 

  360. Largo, C., Ibarz, J.M., Herreras, O.: Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 78, 295–307 (1997)

    Google Scholar 

  361. Larkum, M.E., Zhu, J.J., Sakmann, B.: A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999)

    Google Scholar 

  362. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A., Schiller, J.: Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009)

    Google Scholar 

  363. Lashley, K.: Patterns of cerebral integration indicated by scotomas of migraine. Arch. Neurol. Pyschiatry 46, 331–339 (1941)

    Google Scholar 

  364. Lauritsen, K.B., Zapperi, S., Stanley, H.E.: Self-organized branching processes: avalanche models with dissipation. Phys. Rev. E 54, 2483–2488 (1996)

    Google Scholar 

  365. Leao, A.A.P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 10, 409–414 (1944)

    Google Scholar 

  366. Leao, A.A.P., Morrisson, R.S.: Propagation of spreading cortical depression. J. Neurophysiol. 8, 33–45 (1945)

    Google Scholar 

  367. Lechleiter, J., Girard, S., Peralta, E., Clapham, D.: Spiral calcium wave propagation and annihilation in xenopus laevis oocytes. Science 252, 123–126 (1991)

    Google Scholar 

  368. Leclerc, C., Neant, I., Moreau, M.: The calcium: an early signal that initiates the formation of the nervous system during early embryogenesis. Front. Mol. Neurosci. 5 (64), 1–12 (2012)

    Google Scholar 

  369. Lee, S.H., Blake, R., Heeger, D.J.: Traveling waves of activity in primary visual cortex during binocular rivalry. Nat. Neurosci. 8, 22–23 (2005)

    Google Scholar 

  370. Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M., Yasuda, R.: Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009)

    Google Scholar 

  371. Lee, S.J., Lim, H.S., Masliah, E., Lee, H.J.: Protein aggregate spreading in neurodegerative diseases: problems and perspectives. Neuro. Res. 70, 339–348 (2011)

    Google Scholar 

  372. Lehky, S.R.: Binocular rivalry is not chaotic. Proc. Roy. Soc. Lond. Biol Sci. 259, 71–76 (1995)

    Google Scholar 

  373. Lehky, S.R.: No binocular rivalry in the LGN of alert macaque monkeys. Vis. Res. 36, 1225–1234 (1996)

    Google Scholar 

  374. Lehner, F.K.: On the validity of Fick’s law for transient diffusion through a porous medium. Chem. Eng. Sci. 34, 821–825 (1977)

    Google Scholar 

  375. Lemieux, L., Daunizeau, J., Walker, M.C.: Concepts of connectivity and human epileptic activity. Front. Syst. Neurosci. 5 (12), 1–13 (2011)

    Google Scholar 

  376. Leopold, D.A., Logothetis, N.K.: Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379, 549–553 (1996)

    Google Scholar 

  377. LeVay, S., Nelson, S.B.: Columnar organization of the visual cortex. In: Leventhal, A.G. (ed.) The Neural Basis of Visual Function, pp. 266–315. CRC Press, Boca Raton (1991)

    Google Scholar 

  378. Levelt, W.J.M.: On Binocular Rivalry. Institute for Perception RVO–TNO, Soesterberg, The Netherlands (1965)

    Google Scholar 

  379. Leybaert, L., Paemeleire, K., Strahonja, A., Sanderson, M.J.: Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407 (1998)

    Google Scholar 

  380. Leybaert, L., Sanderson, M.J.: Intercellular Ca2+ waves: mechanisms and function. Physiol. Rev. 92, 1359–1392 (2012)

    Google Scholar 

  381. Li, Y., Rinzel, J.: Equations for InsP3 receptor-mediated calcium oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994)

    Google Scholar 

  382. Liley, D.J.T., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electrocortical activity. Network 13, 67–113 (2002)

    MATH  Google Scholar 

  383. Linder, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Google Scholar 

  384. Lisman, J.E.: Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999)

    Google Scholar 

  385. Lisman, J.: Long-term potentiation: outstanding questions and attempted synthesis. Phil. Trans. R. Soc. Lond. B 358, 829–842 (2003)

    Google Scholar 

  386. Lisman, J.E., Schulman, H., Cline, H.: The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Rev. Neurosci. 3, 175–190 (2002)

    Google Scholar 

  387. Litwin-Kumar, A., Doiron, B.: Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012)

    Google Scholar 

  388. Liu, Q.S., Xu, Q., Kang, G.A.J., Nedergaard, M.: Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl. Acad Sci. USA 101, 3172–3177 (2004)

    Google Scholar 

  389. Llano, I., González, J., Caputo, C., Lai, F.A., Blayney, L.M., Tan, Y.P., Marty, A.: Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat. Neurosci. 3, 1256–1265 (2000)

    Google Scholar 

  390. Logothetis, N.K., Leopold, D.A., Sheinberg, D.L.: What is rivalling during binocular rivalry? Nature 380, 621–624 (1996)

    Google Scholar 

  391. London, M., Roth, A., Beeren, L., Hausser, M., Latham, P.E.: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466, 123–127 (2010)

    Google Scholar 

  392. Loxley, P., Robinson, P.: Soliton model of competitive neural dynamics during binocular rivalry. Phys. Rev. Lett. 102(25), 258701 (2009)

    Google Scholar 

  393. Lubenov, E.V., Siapas, A.G.: Hippocampal theta oscillations are travelling waves. Nature 459, 534–539 (2009)

    Google Scholar 

  394. Luo, L.: Actin cytoskeleton regulation in neuronalmorphogenesis and structural plasticity. Ann. Rev. Cell Dev. Biol. 18, 601–635 (2002)

    Google Scholar 

  395. Ly, C., Tranchina, D.: Critical analysis of a dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput. 19, 2032–2092 (2007)

    MathSciNet  MATH  Google Scholar 

  396. Madison, D.V., Nicoll, R.A.: Control of the repetitive discharge of rat CA1 pyramidal neurones in vitro. J. Physiol. 354, 319–331 (1984)

    Google Scholar 

  397. Magee, J.C., Johnston, D.: Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90 (1995)

    Google Scholar 

  398. Maier, R.S., Stein, D.L.: Limiting exit location distribution in the stochastic exit problem. SIAM J. Appl. Math 57, 752–790 (1997)

    MathSciNet  MATH  Google Scholar 

  399. Maier, N., Nimmrich, V., Draguhn, A.: Cellular and network mechanisms underlying spontaneous sharp wave–ripple complexes in mouse hippocampal slices. J. Physiol. 550, 873–887 (2003)

    Google Scholar 

  400. Major, G., Polsky, A., Denk, W., Schiller, J., Tank, D.W.: Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J. Neurophysiol. 99, 2584–2601 (2008)

    Google Scholar 

  401. Malach, R., Harel, Y.A.M., Grinvald, A.: Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA 90, 0469–10473 (1993)

    Google Scholar 

  402. Malenka, R.C., Bear, M.F.: LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004)

    Google Scholar 

  403. Manita, S., Ross, W.N.: Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ releases events in the dendrites of pyramidal neurons. J. Neurosci. 29, 7833–7845 (2009)

    Google Scholar 

  404. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)

    Google Scholar 

  405. Markram, H., Tsodyks, M.: Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996)

    Google Scholar 

  406. Martins-Ferreira, H., Ribeiro, I.J.: Biphasic effects of gap junctional uncoupling agents on the propagation of retinal spreading depression. Braz. J. Med. Biol. Res. 28, 991–994 (1995)

    Google Scholar 

  407. Martins-Ferreira, H., Nedergaard, M., Nicholson, C.: Perspectives on spreading depression. Brain Res. Rev. 32, 215–234 (2000)

    Google Scholar 

  408. Masel, J., Jansen, V.A.A., Nowak, M.A.: Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–15 (1999)

    Google Scholar 

  409. Masuda, N., Aihara, K.: Global and local synchrony of coupled neurons in small-world networks. Biol. Cybern. 90, 302–309 (2004)

    MATH  Google Scholar 

  410. Mataga, N., Mizuguchi, Y., Hensch, T.K.: Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 1031–1041 (2004)

    Google Scholar 

  411. Matthaus, F.: Diffusion versus network models as descriptions for the spread of prion diseasess in the brain. J. Theor. Biol. 240, 104–113 (2006)

    MathSciNet  Google Scholar 

  412. Mattia, M., Guidice, P.D.: Population dynamics of interacting spiking neurons. Phys. Rev. E 66, 051917 (2002)

    MathSciNet  Google Scholar 

  413. Matus, A.: Actin plasticity in dendritic spines. Science 290, 754–758 (2000)

    Google Scholar 

  414. Mayer, M.L., Westbrook, G.L., Guthrie, P.B.: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurone. Nature 309, 261–263 (1984)

    Google Scholar 

  415. McCormick, D.A., Contreras, D.: On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846 (2001)

    Google Scholar 

  416. McLaughlin, T., Torborg, C.L., Feller, M.B., O’Leary, D.D.M.: Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147–1160 (2003)

    Google Scholar 

  417. Meinhardt, H.: Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell. Sci. 112, 2867–2874 (1999)

    Google Scholar 

  418. Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., Gross, T.: Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comp. Biol. 8, e1002312 (2012)

    Google Scholar 

  419. Melamed, O., Barak, O., Silberberg, G., Markram, H., Tsodyks, M.: Slow oscillations in neural networks with facilitating synapses. J. Comp. Neurosci. 25, 308–316 (2008)

    MathSciNet  Google Scholar 

  420. Menchon, S.A., Gartner, A., Roman, P., Dotti, C.G.: Neuronal (bi)polarity as a self-organized process enhanced by growing membrane. PLoS One 6(9), e24190 (2011)

    Google Scholar 

  421. Mendez, V., Fort, J., Rotstein, H.G., Fedotov, S.: Speed of reaction-diffusion fronts in spatially heterogeneous media. Phys. Rev. E 68, 041105 (2003)

    MathSciNet  Google Scholar 

  422. Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems. Springer, Berlin (2010)

    Google Scholar 

  423. Meng, X., Huguet, G., Rinzel, J.: Type III excitability, slope sensitivity and coincidence detection. Disc. Cont. Dyn. Systs, 32, 2729–2757 (2012)

    MathSciNet  MATH  Google Scholar 

  424. Meunier, C., d’Incamps, B.L.: Extending cable theory to heterogeneous dendrites. Neural Comput. 20, 1732–1775 (2008)

    Google Scholar 

  425. Meyer, C., van Vreeswijk, C.: Temporal correlations in stochastic networks of spiking neurons. Neural Comput. 14, 369–404 (2002)

    MATH  Google Scholar 

  426. Mikhailov, A.S., Davydov, V.A., Zykov, V.S.: Complex dynamics of spiral waves and motion of curves. Physica D 70, 1–39 (1994)

    MathSciNet  MATH  Google Scholar 

  427. Miller, J.P., Rall, W., Rinzel, J.: Synaptic amplification by active membrane in dendritic spines. Brain Res. 325, 325–330 (1985)

    Google Scholar 

  428. Miller, L.D., Golarai, J.J.P., Connor, J.: Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J. Neurophysiol. 76, 554–562 (1996)

    Google Scholar 

  429. Millhauser, G.L., Salpeter, E.E., Oswald, R.E.: Diffusion model of ion–channel gating and the origin of power–law distributions from single–channel recordings. Proc. Natl. Acad. Sci. USA 85, 1503–1507 (1988)

    Google Scholar 

  430. Milton, J., Jung, P.: Epilepsy as a Dynamic Disease. Springer, Berlin (2003)

    MATH  Google Scholar 

  431. Mirollo, R.E., Strogatz, S.H.: Synchronisation of pulse–coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    MathSciNet  MATH  Google Scholar 

  432. Mitchison, T., Kirschner., M.: Cytoskeletal dynamics and nerve growth. Neuron 1, 761–772 (1988)

    Google Scholar 

  433. Miura, R., Huang, H., Wylie, J.: Cortical spreading depression: An enigma. Eur. Phys. J. Special Topics 147, 287–302 (2007)

    Google Scholar 

  434. Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)

    Google Scholar 

  435. Moldakarimov, S., Rollenhagen, J.E., Olson, C.R., Chow, C.C.: Competitive dynamics in cortical responses to visual stimuli. J. Neurophysiol. 94, 3388–3396 (2005)

    Google Scholar 

  436. Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98, 1125–1139 (2007)

    Google Scholar 

  437. Morgan, R.J., Soltesz, I.: Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad. Sci. USA 105, 6179–6184 (2008)

    Google Scholar 

  438. Mori, Y., Jilkine, A., Edelstein-Keshet, L.: Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J. 94, 3684–3697 (2008)

    Google Scholar 

  439. Mori, Y., Jilkine, A., Edelstein-Keshet, L.: Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization. SIAM J. Appl. Math. 71, 1401–1427 (2011)

    MathSciNet  MATH  Google Scholar 

  440. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. J. Biophys. 35, 193–213 (1981)

    Google Scholar 

  441. Mulleners, W.M., Chronicle, E.P., Palmer, J.E., Koehler, P.J., Vredeveld, J.W.: Visual cortex excitability in migraine with and without aura. Headache 41, 565–572 (2001)

    Google Scholar 

  442. Muller, L., Destexhe, A.: Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. J. Physiol. (Paris) 106, 222–238 (2012)

    Google Scholar 

  443. Mullins, O.J., Hackett, J.T., Buchanan, J.T., Friesen, W.O.: Neuronal control of swimming behavior: Comparison of vertebrate and invertebrate model systems. Prog. Neurobiol. 93, 244–269 (2011)

    Google Scholar 

  444. Murray, J.D.: Mathematical Biology, vol. I, II. Springer, Berlin (2002)

    MATH  Google Scholar 

  445. Naeh, T., Klosek, M.M., Matkowsky, B.J., Schuss, Z.: A direct approach to the exit problem. SIAM J. Appl. Math. 50, 595–627 (1990)

    MathSciNet  MATH  Google Scholar 

  446. Nagumo, J., Armoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1964)

    Google Scholar 

  447. Nakamura, T., Barbara, J.G., Nakamura, K., Ross, W.N.: Synergistic release of Ca2+ from IP3 sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999)

    Google Scholar 

  448. Nedergaard, M., Cooper, A.J., Goldman, S.A.: Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 28, 433–444 (1995)

    Google Scholar 

  449. Nedergaard, M., Ransom, B., Goldman, S.A.: New roles for astrocytes: redefining the functional architecture of the brain. Trend. Neurosci. 26, 523–530 (2003)

    Google Scholar 

  450. Netoff, T.I., Schiff, S.J.: Decreased neuronal synchronization during experimental seizures. J. Neurosci. 22, 7297–7307 (2002)

    Google Scholar 

  451. Netoff, T.I., Clewely, R., Arno, S., Keck, T., White, J.A.: Epilepsy in small-world networks. J. Neurosci. 24, 8075–8083 (2004)

    Google Scholar 

  452. Neukirchen, D., Bradke, F.: Neuronal polarization and the cytoskeleton. Sem. Cell. Dev. Biol. 22, 825–833 (2011)

    Google Scholar 

  453. Newby, J.M., Bressloff, P.C.: Local synaptic signalling enhances the stochastic transport of motor-driven cargo in neurons. Phys. Biol. 7, 036004 (2010)

    Google Scholar 

  454. Newby, J.M., Bressloff, P.C.: Quasi-steady state reduction of molecular-based models of directed intermittent search. Bull. Math. Biol. 72, 1840–1866 (2010)

    MathSciNet  MATH  Google Scholar 

  455. Newby, J., Chapman, J.: Metastable behavior in Markov processes with internal states: breakdown of model reduction techniques. J. Math. Biol. published online, DOI: 10.1007/s00285-013-0723-1 (2013)

    Google Scholar 

  456. Newby, J.M., Bressloff, P.C., Keeener, J.P.: The effect of potassium channels on spontaneous action potential initiation by stochastic ion channels. Phys. Rev. Lett. 111, 128–101 (2013)

    Google Scholar 

  457. Newman, E.A.: Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J. Neurosci. 21, 2215–2223 (2001)

    Google Scholar 

  458. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)

    MathSciNet  Google Scholar 

  459. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    MathSciNet  MATH  Google Scholar 

  460. Newman, E.A., Zahs, K.R.: Calcium waves in retinal glial cells. Science 275, 844–847 (1997)

    Google Scholar 

  461. Nicholson, C.: Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64, 815–884 (2001)

    Google Scholar 

  462. Nimchinsky, E.A., Sabatini, B.L., Svoboda, K.: Structure and function of dendritic spines. Ann. Rev. Physiol. 64, 313–353 (2002)

    Google Scholar 

  463. Nita, D.A., Cisse’, Y., Timofeev, I., Steriade, M.: Increased propensity to seizures after chronic cortical deafferentation in vivo. J. Neurophysiol. 95, 902–913 (2006)

    Google Scholar 

  464. Noble, J.V.: Geographic and temporal development of plagues. Nature 250, 726–729 (1974)

    Google Scholar 

  465. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290 (1965)

    Google Scholar 

  466. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., Prochiantz, A.: Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984)

    Google Scholar 

  467. Nunez, P.I.: Neocortical dynamics and human EEG rhythms. Oxford University Press, New York (1995)

    Google Scholar 

  468. Nykamp, D., Tranchina, D.: A population density method that facilitates large–scale modeling of neural networks: analysis and application to orientation tuning. J. Comp. Neurosci. 8, 19–50 (2000)

    MATH  Google Scholar 

  469. Obermayer, K., Blasdel, G.G.: Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neurosci. 13, 4114–4129 (1993)

    Google Scholar 

  470. O’Donnell, M., Chance, R.K., Bashaw, G.J.: Axon growth and guidance: Receptor regulation and signal transduction. Ann. Rev. Neurosci. 32, 383–412 (2009)

    Google Scholar 

  471. O’Donovan, M.J.: The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neuro. 9, 94–104 (1999)

    Google Scholar 

  472. O’Donovan, M.J., Chub, N., Wenner, P.: Mechanisms of spontaneous activity in the developing retina. J. Neurobiol. 37, 131–145 (1998)

    Google Scholar 

  473. Ohira, T., Cowan, J.D.: Stochastic neurodynamics and the system size expansion. In: Ellacott, S., Anderson, I.J. (eds.) Proceedings of the First International Conference on Mathematics of Neural Networks, pp. 290–294. Academic, New York (1997)

    Google Scholar 

  474. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence from unit activity in the freely moving rat. Brain Res. 34, 171–174 (1971)

    Google Scholar 

  475. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993)

    Google Scholar 

  476. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, New York (2007)

    Google Scholar 

  477. Omurtag, A., Knight, B.W., Sirovich, L.: On the simulation of large populations of neurons. J. Comput. Neurosci. 8, 51–63 (2000)

    MATH  Google Scholar 

  478. Onsum, M., Rao, C.V.: A mathematical model for neutrophil gradient sensing and polarization. PLoS Comput. Biol. 3, e36 (2007)

    MathSciNet  Google Scholar 

  479. Ooyen, A.V., Graham, B.P., Ramakers, G.J.A.: Competition for tubulin between growing neurites during development. Neurocomputing 38, 73–78 (2001)

    Google Scholar 

  480. Oray, S., Majewska, A., Sur, M.: Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degredation. Neuron 44, 1021–1030 (2004)

    Google Scholar 

  481. Othmer, H., Dunbar, S., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    MathSciNet  MATH  Google Scholar 

  482. Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108 (2007)

    MathSciNet  Google Scholar 

  483. Pak, C.W., Flynn, K.C., Bamburg, J.R.: Actin-binding proteins take the reins in growth cones. Nat. Rev. Neurosci. 9, 136–147 (2008)

    Google Scholar 

  484. Pakdaman, K., Thieullen, M., Wainrib, G.: Fluid limit theorems for stochastic hybrid systems with application to neuron models. J. Appl. Prob. 24, 1 (2010)

    Google Scholar 

  485. Panatier, A., Theodosis, D.T., Mothet, J.P., Touquet, B., Pollegioni, L., Poulain, D.A., Oliet, S.H.: Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125, 775–784 (2006)

    Google Scholar 

  486. Panja, D.: Effects of fluctuations on propagating fronts. Phys. Rep. 393, 87–174 (2004)

    Google Scholar 

  487. Papanicolaou, G.C.: Asymptotic analysis of transport processes. Bull. Amer. Math. Soc. 81, 330–392 (1975)

    MathSciNet  MATH  Google Scholar 

  488. Parga, N., Abbott, L.F.: Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Front. Neurosci. 1, 57–66 (2007)

    Google Scholar 

  489. Parker, I., Ivorra, I.: Localized all-or-none calcium liberation by inositol triphosphate. Science 250, 977–979 (1990)

    Google Scholar 

  490. Parker, I., Yao, Y.: Regenerative release of calcium from functionally discrete subcellular stores by inositol triphosphate. Proc. Roy. Soc. Lond. B 246, 269–274 (1991)

    Google Scholar 

  491. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G.: Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994)

    Google Scholar 

  492. Parri, H.R., Gould, T.M., Crunelli, V.: Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–81 (2001)

    Google Scholar 

  493. Pascual, O., Casper, K.B., Kubera, C., Zhang, J., Revilla-Sanchez, R., Sul, J.Y., Takano, H., Moss, S.J., McCarthy, K., Haydon, P.G.: Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005)

    Google Scholar 

  494. de Pasquale, F., Gorecki, J., Poielawski., J.: On the stochastic correlations in a randomly perturbed chemical front. J. Phys. A 25, 433 (1992)

    Google Scholar 

  495. Paullet, J.E., Ermentrout, G.B.: Stable rotating waves in two-dimensional discrete active media. SIAM J. Appl. Math. 54, 1720–1744 (1994)

    MathSciNet  MATH  Google Scholar 

  496. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, New York (2008)

    Google Scholar 

  497. Pearson, J.E., Ponce-Dawson, S.: Crisis on skid row. Physica A 257, 141–148 (1998)

    Google Scholar 

  498. Pearson, R., Catsicas, M., Becker, D., Mobbs, P.: Purinergic and muscarinic modulation of the cell cycle and calcium signaling in the chick retinal ventricular zone. J. Neurosci. 22, 7569–7579 (2002)

    Google Scholar 

  499. Pearson, R.A., Dale, N., Llaudet, E., Mobbs, P.: ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46, 731–744 (2005)

    Google Scholar 

  500. Pereda, E., Quiroga, R., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37 (2005)

    Google Scholar 

  501. Peters, O., Schipke, C.G., Hashimoto, Y., Kettenmann, H.: Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci. 23, 9888–9896 (2003)

    Google Scholar 

  502. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  503. Pinder, G.F., Gray, W.G.: Essentials of Multiphase Flow and Transport in Porous Media. Wiley, New York (2008)

    Google Scholar 

  504. Pinto, D., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks I: traveling fronts and pulses. SIAM J. Appl. Math 62, 206–225 (2001)

    MathSciNet  MATH  Google Scholar 

  505. Pinto, D., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks II: lateral inhibition and standing pulses. SIAM J. Appl. Math. 62, 226–243 (2001)

    MathSciNet  MATH  Google Scholar 

  506. Pinto, D., Jackson, R.K., Wayne, C.E.: Existence and stability of traveling pulses in a continuous neuronal network. SIAM J. Appl. Dyn. Syst. 4, 954–984 (2005)

    MathSciNet  MATH  Google Scholar 

  507. Pinto, D., Patrick, S.L., Huang, W.C., Connors, B.W.: Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J. Neurosci. 25, 8131–8140 (2005)

    Google Scholar 

  508. Plenz, D., Thiagarajan, T.C.: The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trend. Neurosci. 30, 101–110 (2007)

    Google Scholar 

  509. Polleux, F., Snider, W.: Initiating and growing an axon. Cold Spring Harb Perspect Biol 2, a001925 (2010)

    Google Scholar 

  510. Polonsky, A., Blake, R., Braun, J., Heeger, D.J.: Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat. Neurosci. 3, 1153–1159 (2000)

    Google Scholar 

  511. Ponce, S.J., Keizer, J., Pearson, J.E.: Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc. Nat. Acad. Sci. USA 96, 6060–6063 (1999)

    Google Scholar 

  512. Prechtl, J.C., Cohen, L.B., Pesaran, B., Mitra, P.P., Kleinfeld, D.: Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. USA 94, 7621–7626 (1997)

    Google Scholar 

  513. Prusiner, S.B.: Prions. Proc. Nat. Acad. Sci. (USA) 95, 13363–13383 (1998)

    Google Scholar 

  514. Rakic, P.: Elusive radial glial cells: historical and evolutionary perspective. Glia 43, 19–32 (2003)

    Google Scholar 

  515. Rall, W., Snir, H.A.: Cable theory for dendritic neurons. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modelling, 2nd edn. MIT Press, Cambridge (1998)

    Google Scholar 

  516. Ramirez, O.A., Couve, A.: The endoplasmic reticulum and protein trafficking in dendrites and axons. Trend. Cell. Biol. 21, 219–227 (2011)

    Google Scholar 

  517. Rangan, A.V., Kovacic, G., Cai, D.: Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915 (2008)

    MathSciNet  Google Scholar 

  518. Reed, M.C., Venakides, S., Blum, J.J.: Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Appl. Math. 50(1), 167–180 (1990)

    MathSciNet  MATH  Google Scholar 

  519. Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K.D.: The asynchronous state in cortical circuits. Science 327, 587–590 (2010)

    Google Scholar 

  520. Rhodes, P.: The properties and implications of NMDA spikes in neocortical pyramidal cells. J. Neurosci. 26, 6704–6715 (2006)

    Google Scholar 

  521. Richardson, K.A., Schiff, S.J., Gluckman, B.J.: Control of traveling waves in the mammalian cortex. Phys. Rev. Lett. 94, 028103 (2005)

    Google Scholar 

  522. Richardson, M.P.: Large scale brain models of epilepsy: dynamics meets connectomics. Epilepsy (2012)

    Google Scholar 

  523. Rinzel, J., Maginu, K.: Kinematic analysis of wave pattern formation in excitable media. In: Pacault, A., Vidal, C. (eds.) Non-Equilibrium Dynamics in Chemical Systems. Springer, Berlin (1984)

    Google Scholar 

  524. Rinzel, J., Terman, D.: Propagation phenomena in a bistable reaction–diffusion system. SIAM J. Appl. Math. 42, 1111–1137 (1982)

    MathSciNet  MATH  Google Scholar 

  525. Rinzel, J., Terman, D., Wang, X., Ermentrout, B.: Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279, 1351–1355 (1998)

    Google Scholar 

  526. Robinson, P.A.: Patchy propagator, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006)

    MathSciNet  Google Scholar 

  527. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)

    Google Scholar 

  528. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.I.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021903 (2001)

    Google Scholar 

  529. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002)

    Google Scholar 

  530. Rocco, A., Ebert, U., van Saarloos, W.: Subdiffusive fluctuations of “pulled” fronts with multiplicative noise. Phys. Rev. E. 65, R13–R16 (2000)

    Google Scholar 

  531. Rockland, K.S., Lund, J.: Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216, 303–318 (1983)

    Google Scholar 

  532. Rose, J., Jin, S.X., Craig, A.M.: Heterosynaptic molecular dynamics: locally induced propagating synaptic accumulation of CaM Kinase II. Neuron 61, 351–358 (2009)

    Google Scholar 

  533. Ross, C.A., Poirier, M.A.: Protein aggregation and neurodegenerative disease. Nat. Med. 10(Suppl.), S10–S17 (2004)

    Google Scholar 

  534. Ross, W.N.: Understanding calcium waves and sparks in central neurons. Nat. Rev. Neurosci. 13, 157–168 (2012)

    Google Scholar 

  535. Roxin, A., Riecke, H., Solla, S.A.: Self-sustained activity in a small-world network of excitable neurons. Phys. Rev. Lett. 92, 198101 (2004)

    Google Scholar 

  536. Rubin, J.E.: A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discret. Contin. Dyn. Syst. 10, 925–940 (2004)

    MATH  Google Scholar 

  537. Rubin, J., Terman, D.: Geometric singular perturbation analysis of neuronal dynamics. In: Fiedler, B. (ed.) Handbook of Dynamical Systems: Towards Applications, vol. 2. Elsevier, Amsterdam (2002)

    Google Scholar 

  538. Rubin, J.E., Terman, D.: Explicit maps to predict activation order in multiphase rhythms of a coupled cell network. J. Math. Neurosci. 2, 4 (2012)

    MathSciNet  Google Scholar 

  539. Rubin, J., Wechselberger, M.: Giant squid-hidden canard: the 3d geometry of the Hodgkin–Huxley model. Biol. Cybern. 97, 5–32 (2007)

    MathSciNet  MATH  Google Scholar 

  540. Rubin, J., Wechselberger, W.: The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos 18, 015105 (2008)

    MathSciNet  Google Scholar 

  541. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010)

    Google Scholar 

  542. Ruthel, G., Banker, G.: Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons: A novel form of axonal transport? Cell Motil. Cytoskel. 40, 160–173 (1998)

    Google Scholar 

  543. Ruthel, G., Banker, G.: Role of moving growth cone-like wave structures in the outgrowth of cultured hippocampal axons and dendrites. J. Neurobiol. 39, 97–106 (1999)

    Google Scholar 

  544. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003)

    MATH  Google Scholar 

  545. Saez, J.C., Berthoud, V.M., Branes, M.C., Martinez, A.D., Beyer., E.C.: Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 83, 1359–1400 (2003)

    Google Scholar 

  546. Sagues, F., Sancho, J.M., Garcia-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829–882 (2007)

    Google Scholar 

  547. Saitoh, T., Schwartz, J.H.: Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in aplysia neurons. J. Cell. Biol. 100, 835–842 (1985)

    Google Scholar 

  548. Samuels, D.C., Hentschel, H.G.E., Fine, A.: The origin of neuronal polarization: a model of axon formation. Phil. Trans. R. Soc. Lond. B 351, 1147–1156 (1996)

    Google Scholar 

  549. Sanchez-Vives, M.V., McCormick, D.A.: Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000)

    Google Scholar 

  550. Sanderson, M.J., Charles, A.C., Dirksen, E.R.: Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell. Regul. 1, 585–596 (1990)

    Google Scholar 

  551. Sandstede, B.: Stability of travelling waves. In: Handbook of Dynamical Systems, vol. 2, pp. 983–1055. North-Holland, Amsterdam (2002)

    Google Scholar 

  552. Sandstede, B.: Evans functions and nonlinear stability of traveling waves in neuronal network models. Int. J. Bifur. Chaos Appl. Sci. Eng. 17, 2693–2704 (2007)

    MathSciNet  MATH  Google Scholar 

  553. Sato, T.K., Nauhaus, I., Carandini, M.: Traveling waves in visual cortex. Neuron 75, 218–229 (2012)

    Google Scholar 

  554. Scemes, E., Giaume, C.: Astrocyte calcium waves: what they are and what they do. Glia 54, 716–725 (2006)

    Google Scholar 

  555. Schiller, J., Schiller, Y., Stuart, G., Sakmann, B.: Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. 505, 605–616 (1997)

    Google Scholar 

  556. Schiller, J., Major, G., Koester, H.J., Schiller, Y.: NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000)

    Google Scholar 

  557. Schimansky-Geier, L., Mikhailov, A.S., Ebeling., W.: Effects of fluctuations on plane front propagation in bistable nonequilibrium systems. Ann. Phys. 40, 277 (1983)

    Google Scholar 

  558. Schock, S.C., Munyao, N., Yakubchyk, Y., Sabourin, L.A., Hakim, A.M., Ventureyra, E.C.G., Thompson, C.S.: Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res. 1168, 129–138 (2007)

    Google Scholar 

  559. Schuss, Z.: Theory and applications of stochastic processes: an analytical approach. In: Applied Mathematical Sciences, vol. 170. Springer, New York (2010)

    Google Scholar 

  560. Schuster, H.G., Wagner, P.: A model for neuronal oscillations in visual cortex. Biol. Cybern. 64, 77–82 (1990)

    MATH  Google Scholar 

  561. Schutz, P., Bode, M., Purwins, H.G.: Bifurcations of front dynamics in a reaction-diffusion system with spatial inhomogeneities. Physica D 82, 382–397 (1995)

    MathSciNet  Google Scholar 

  562. Schwartz, E.: Spatial mapping in the primate sensory projection: analytic structure and relevance to projection. Biol. Cybern. 25, 181–194 (1977)

    Google Scholar 

  563. Seely, J., Chow, C.C.: Role of mutual inhibition in binocular rivalry. J. Neurophysiol. 106, 2136–2150 (2011)

    Google Scholar 

  564. Seifert, G.: Astrocyte dysfunction in neurological disorders; a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006)

    Google Scholar 

  565. Selkoe, D.J.: Folding proteins in fatal way. Nature 426, 900–904 (2003)

    Google Scholar 

  566. Selkoe, D.J.: Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 6, 1054–1061 (2004)

    Google Scholar 

  567. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)

    Google Scholar 

  568. Shapiro, B.E.: Osmotic forces and gap junctions in spreading depression: A computational model. J. Comp. Neurosci. 10, 99–120 (2001)

    Google Scholar 

  569. Shen, K., Meyer, T.: Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor simulation. Science 284, 162–166 (1999)

    Google Scholar 

  570. Shen, K., Tereul, M.N., Subramanian, K., Meyer, T.: CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron 21, 593–606 (1998)

    Google Scholar 

  571. Shepherd, G.M.: The dendritic spine: a multifunctional unit. J. Neurophysiol. 75, 2197–2210 (1996)

    Google Scholar 

  572. Shepherd, G.M., Brayton, R.K., Miller, J.P., Segev, I., Rinzel, J., Rall, W.: Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc. Natl. Acad. Sci. USA 82, 2192–2195 (1985)

    Google Scholar 

  573. Shew, W.L., Plenz, D.: The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100 (2012)

    Google Scholar 

  574. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160 (1986)

    MathSciNet  MATH  Google Scholar 

  575. Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford University Press, Oxford (1997)

    Google Scholar 

  576. Shimada, T., Toriyama, M., Uemura, K., Kamiguchi, H., Sugiura, T., Watanabe, N., Inagaki, N.: Shootin1 interacts with actine retrograde flow and L1-CAM to promote axon outgrowth. J. Cell. Biol. 181, 817–829 (2008)

    Google Scholar 

  577. Shpiro, A., Moreno-Bote, R., Rubin, N., Rinzel, J.: Dynamical characteristics common to neuronal competition models. J. Neurophysiol. 97, 37–54 (2007)

    Google Scholar 

  578. Shpiro, A., Curtu, R., Rinzel, J., Rubin, N.: Balance between noise and adaptation in competition models of perceptual bistability. J Comp. Neurosci. 27, 462–473 (2009)

    Google Scholar 

  579. Shuai, J.W., Jung, P.: Stochastic properties of Ca2+ release of Inositol 1,4,5-Triphosphate receptor clusters. Biophys. J. 83, 87–97 (2002)

    Google Scholar 

  580. Shusterman, V., Troy, W.C.: From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Phys. Rev. E 77, 061911 (2008)

    MathSciNet  Google Scholar 

  581. Silva, J.S.D., Dotti, C.G.: Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neurosci. 3, 694–704 (2002)

    Google Scholar 

  582. Silva, F.H.L.D., Blanes, W., Kalitzin, S.N., Parra, J., Suffczynski, P., Velis, D.N.: Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans. Biomed. Eng. 50, 540–548 (2003)

    Google Scholar 

  583. Sincich, L.C., Blasdel, G.G.: Oriented axon projections in primary visual cortex of the monkey. J. Neurosci. 21, 4416–4426 (2001)

    Google Scholar 

  584. Sinha, S.R.: Basic mechanisms of sleep and epilespy. J. Clin. Neurophysiol. 28, 103–110 (2011)

    Google Scholar 

  585. Sjostrom, P.J., Rancz, E.A., Roth, A., Hausser, M.: Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008)

    Google Scholar 

  586. Skinner, F., Kopell, N., Marder, E.: Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J. Comput. Neurosci. 1, 69–87 (1994)

    MATH  Google Scholar 

  587. Smaily, M.E., Hamel, F., Roques, L.: Homogenization and influence of fragmentation in a biological invasion model. Discret. Contin. Dyn. Syst. Ser. A 25, 321–342 (2009)

    MATH  Google Scholar 

  588. Smith, G.D.: Modeling the stochastic gating of ion channels. In: Fall, C., Marland, E.S., wagner, J.M., Tyson, J.J. (eds.) Computational Cell Biology, chap. 11. Springer, New York (2002)

  589. Smith, G.D., Cox, C.L., Sherman, S.M., Rinzel, J.: Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-burst model. J. Neurophysiol. 83, 588–610 (2000)

    Google Scholar 

  590. Sneyd, J., Charles, A.C., Sanderson, M.J.: A model for the propagation of intercellular calcium waves. Amer. J. Physiol. cell physiol. 266, C293–C302 (1994)

    Google Scholar 

  591. Sneyd, J., Wetton, B.T., Charles, A.C., Sanderson, M.J.: Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am. J. Physiol. Cell Physiol. 268, C1537–C1545 (1995)

    Google Scholar 

  592. Sneyd, J., Dale, P.D., Duffy, A.: Traveling waves in buffered systems: applications to calcium waves. SIAM J. Appl. Math. 58, 1178–1192 (1998)

    MathSciNet  MATH  Google Scholar 

  593. Softky, W.R., Koch, C.: Cortical cell should spike regularly but do not. Neural Comput. 4, 643–646 (1992)

    Google Scholar 

  594. Soltesz, I., Staley, K.: Computational Neuroscience in Epilepsy. Academic, San Diego (2008)

    Google Scholar 

  595. Somers, D.C., Nelson, S., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995)

    Google Scholar 

  596. Somjen, G.G.: Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096 (2001)

    Google Scholar 

  597. Soula, H., Chow, C.C.: Stochastic dynamics of a finite-size spiking neural network. Neural Comput. 19, 3262–3292 (2007)

    MathSciNet  MATH  Google Scholar 

  598. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010)

    Google Scholar 

  599. Staley, K.J., Dudek, F.E.: Interictal spikes and epileptogenesis. Epilepsy Currents 6, 199–202 (2006)

    Google Scholar 

  600. Stam, C.J., Reijeneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlin. Biomed. Phys. 1 (3), 1–19 (2007)

    Google Scholar 

  601. Steinberg, B., Wang, Y.Q., Huang, H., Miura, R.: Spatial buffering mechanism: Mathematical model and computer simulations. Math. Biosci. Eng. 2, 675–702 (2005)

    MathSciNet  MATH  Google Scholar 

  602. Steriade, M., McCormick, D.A., Sejnowski, T.J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993)

    Google Scholar 

  603. Steyn-Ross, M.L., Sleigh, D.A.S.R.J.W., Whiting, D.R.: Theoretical predictions for spatial covariance of the electroencephalographic signal during the anesthetic-induced phase transition: Increased correlation length and emergence of spatial self-organization. Phys. Rev. E 68, 021902 (2003)

    Google Scholar 

  604. Stocker, M., Krause, M., Pedarzani, P.: An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 96, 4662–4667 (1999)

    Google Scholar 

  605. Strack, S., Choi, S., Lovinger, D.M., Colbran, R.J.: Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272, 13467–13470 (1997)

    Google Scholar 

  606. Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994)

    Google Scholar 

  607. Stuart, G., Spruston, N., Hausser, M.: Dendrites. Oxford University Press, New York (1999)

    Google Scholar 

  608. Stuart, G., Spruston, N., Hausser, M. (eds.): Dendrites. Oxford University Press, Oxford (2007)

    Google Scholar 

  609. Subramanian, K., Narang, A.: A mechanistic model for eukaryotic gradient sensing: spontaneous and induced phosphoinositide polarization. J. Theor. Biol. 231, 49–67 (2004)

    MathSciNet  Google Scholar 

  610. Sun, W., McConnell, E., Pare, J.F., Xu, Q., Chen, M., Peng, W., Lovatt, D., Han, X., Y.Smith, Nedergaard, M.: Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339, 197–200 (2013)

    Google Scholar 

  611. Sutherland, G.R., McNaughton, B.: Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10, 180–186 (2000)

    Google Scholar 

  612. Swillens, S., Dupont, G., Combettes, L., Champeil, P.: From calcium blips to calcium puffs: theoretical analysis of the requirement for interchannel communication. Proc. Nat. Acad. Sci. (USA) 96, 13750–13755 (1999)

    Google Scholar 

  613. Swindale, N.V.: The development of topography in the visual–cortex: A review of models. Network 7, 161–274 (1996)

    MATH  Google Scholar 

  614. Syed, M.M., Lee, S., He, S., Zhou, Z.J.: Spontaneous waves in the ventricular zone of developing mammalian retina. J. Neurophysiol. 91, 1999–2009 (2004)

    Google Scholar 

  615. Syed, M.M., Lee, S., Zheng, J., Zhou, Z.J.: Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J. Physiol. 560, 533–549 (2004)

    Google Scholar 

  616. Sykova, E., Nicholson, C.: Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008)

    Google Scholar 

  617. Tabak, J., Senn, W., O’Donovan, M.J., Rinzel, J.: Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J. Neurosci. 20, 3041–3056 (2000)

    Google Scholar 

  618. Tauber, U.C.: Field-theory approaches to nonequilibrium dynamics. Lect. Notes Phys. 716, 295–348 (2007)

    MathSciNet  Google Scholar 

  619. Taylor, A., Cottrell, G., Kristan Jr, W.: Analysis of oscillations in a reciprocally inhibitory network with synaptic depression. Neural comput. 14(3), 561–581 (2002)

    MATH  Google Scholar 

  620. Terman, D.H., Ermentrout, G.B., Yew, A.C.: Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math 61, 1578–1604 (2003)

    MathSciNet  Google Scholar 

  621. Thul, R., Coombes, S., Smith, G.D.: Sensitisation waves in a bidomain fire-diffuse-fire model of intracellular Ca2+ dynamics. Physica D 238, 2142–2152 (2009)

    MATH  Google Scholar 

  622. Thul, R., Smith, G.D., Coombes, S.: A bidomain threshold model of propagating calcium waves. J. Math. Biol. 56, 435–463 (2008)

    MathSciNet  MATH  Google Scholar 

  623. Tian, G.F.,, Hooman, A., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Zielke, R., Kang, J., Nedergaard, M.: An astrocytic basis of epilepsy. Nat. Med. 11, 973–981 (2005)

    Google Scholar 

  624. Timofeeva, Y.: Traveling waves in a model of quasi-active dendrites with active spines. Physica D 239, 494–503 (2010)

    MathSciNet  MATH  Google Scholar 

  625. Timofeeva, Y., Lord, G.J., Coombes, S.: Spatio-temporal filtering properies of a dendritic cable with active spines: a modeling study in the spike-diffuse-spike framework. J. Comput. Neurosci. 21, 293–306 (2006)

    MathSciNet  Google Scholar 

  626. Tong, F., Engel, S.A.: Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001)

    Google Scholar 

  627. Tong, F., Meng, M., Blake, R.: Neural bases of binocular rivalry. Trend. Cog. Sci. 10, 502–511 (2006)

    Google Scholar 

  628. Toriyama, M., Shimada, T., Kim, K.B., Mitsuba, M., Nomura, E., Katsuta, K., Sakumura, Y., Roepstorff, P., Inagaki, N.: Shootin1: a protein involved in the organization of an asymmetric signal for neuronal polarization. J. Cell Biol. 175, 147–157 (2006)

    Google Scholar 

  629. Toriyama, M., Sakumura, Y., Shimada, T., Ishii, S., Inagaki, N.: A diffusion-based neurite length-sensing mechanism involved in neuronal symmetry breaking. Mol. Syst. Biol. 6, 1–16 (2010)

    Google Scholar 

  630. Torquato, S.: Random Heterogeneous Materials. Springer, New York (2002)

    MATH  Google Scholar 

  631. Touboul, J., Destexhe, A.: Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLoS One 5, 14 (2010)

    Google Scholar 

  632. Touboul, J., Hermann, G., Faugeras, O.: Noise–induced behaviors in neural mean field dynamics. SIAM J. Appl. Dyn. Sys. 11, 49–81 (2012)

    MathSciNet  MATH  Google Scholar 

  633. Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E., Bergles, D.E.: The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007)

    Google Scholar 

  634. Troy, W.C., Shusterman, V.: Patterns and features of families of traveling waves in large-scale neuronal networks. SIAM J. Appl. Dyn. Syst. 6, 263–292 (2007)

    MathSciNet  MATH  Google Scholar 

  635. Tsai, J.C., Sneyd, J.: Are buffers boring? uniqueness and asymptotical sttability of traveling wave fronts in the buffered bistable equation. J. Math. Biol. 54, 513–553 (2007)

    MathSciNet  MATH  Google Scholar 

  636. Tsai, J.C., Sneyd, J.: Traveling waves in the buffered FitzHugh-Nagumo model. SIAM J. Appl. Math. 71, 1606–1636 (2011)

    MathSciNet  MATH  Google Scholar 

  637. Tsodyks, M., Pawelzik, K., Markram, H.: Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998)

    Google Scholar 

  638. Tuckwell, H.C., Miura, R.M.: A mathematical model for spreading cortical depression. Biophys. J. 23, 257–276 (1978)

    Google Scholar 

  639. Vecchia, D., Pietrobon, D.: Migrain: a disorder of brain excitatory-inhibitory balance? Trend. Neurosci. 35, 507–520 (2012)

    Google Scholar 

  640. Veen, M.V., Pelt, J.V.: Neuritic growth rate described by modelling microtubule dynamics. Bull. Math. Biol. 56, 249–273 (1994)

    MATH  Google Scholar 

  641. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface 6, 925–940 (2009)

    Google Scholar 

  642. Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. 9, 954–998 (2010)

    MathSciNet  MATH  Google Scholar 

  643. Vicker, M.G.: Eukaryotic cell locomotion depends on the propagation of self-organized reaction-diffusion waves and oscillations of actin filament assembly. J. Expt. Cell Res. 275, 54–66 (2002)

    Google Scholar 

  644. Vladimirski, B.B., Tabak, J., ODonovan, M.J., Rinzel, J.: Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. J. Comp. Neurosci. 25, 39–63 (2008)

    Google Scholar 

  645. Vogels, T.P., Abbott, L.F.: Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–10795 (2005)

    Google Scholar 

  646. Volman, V., Sejnowski, T.J., Bazhenov, M.: Topological basis of epileptogenesis in a model of severe cortical trauma. J. Neurophysiol. 106, 1933–1942 (2011)

    Google Scholar 

  647. Volman, V., Bazhenov, M., Sejnowski, T.J.: Computational models of neuron-astrocyte interaction in epilepsy. Front. Comp. Neurosci. 6(58), 1–10 (2012)

    Google Scholar 

  648. Volpert, V., Petrovskii, S.: Reaction-diffusion waves in biology. Phys. Life Rev. 6, 267–310 (2009)

    Google Scholar 

  649. van Vreeswijk, C.: Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E. 54(5), 5522–5537 (1996)

    Google Scholar 

  650. van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits.. Neural Comput. 10, 1321–1371 (1998)

    Google Scholar 

  651. van Vreeswijk, C., Ermentrout, G.B., Abbott, L.F.: When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321 (1994)

    Google Scholar 

  652. Vuyst, E.D., Wang, N., Decrock, E., Bock, M.D., Vinken, M., Moorhem, M.V., Lai, C., Culot, M., Rogiers, V., Cecchelli, R., Naus, C.C., Evans, W.H., Leybaert, L.: Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46, 176–187 (2009)

    Google Scholar 

  653. Wagner, J., Sneyd, J.: Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456 (1994)

    Google Scholar 

  654. Wainrib, G., Thieullen, M., Pakdaman, K.: Reduction of stochastic conductance-based neuron models with time-scales separation. J. Comput. Neurosci. 32, 327–46 (2012)

    MathSciNet  Google Scholar 

  655. Walther, G.R., Maree, A.F., Edelstein-Keshet, L., Grieneisen, V.A.: Deterministic versus stochastic cell polarisation through wave-pinning. Bull. Math. Biol. 74, 2570–2599 (2012)

    MathSciNet  MATH  Google Scholar 

  656. Wang, X.J.: Decision making in recurrent neuronal networks. Neuron 60, 215–234 (2008)

    Google Scholar 

  657. Wang, X.J., Rinzel, J.: Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992)

    Google Scholar 

  658. Wang, S.S., Denk, W., Hausser, M.: Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3, 1266–1273 (2000)

    Google Scholar 

  659. Wang, Z., Haydon, P.G., Yeung, E.S.: Direct observation of calcium-independent intercellular ATP signaling in astrocytes.. Anal. Chem. 72, 2001–2007 (2000)

    Google Scholar 

  660. Ward, M.J., Lee, J.: On the asymptotic and numerical-analyses of exponentially ill-conditioned singularly perturbed boundary value problems. Stud. Appl. Math. 94, 271–326 (1995)

    MathSciNet  MATH  Google Scholar 

  661. Watt, A.J.: Traveling waves in developing cerebellar cortex mediated by asymmetrical purkinje cell connectivity. Nat. Neurosci. 12, 463–473 (2009)

    Google Scholar 

  662. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Google Scholar 

  663. Webber, M., Bressloff, P.C.: The effects of noise on binocular rivalry waves: a stochastic neural field model. J. Stat. Mech 3, P03001 (2013)

    MathSciNet  Google Scholar 

  664. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    MathSciNet  MATH  Google Scholar 

  665. Weiner, O.D., Marganski, W.A., Wu, L.F., Altschuler, S.J., Kirschner, M.W.: An actin-based wave generator organizes cell motility. PLoS Biol. 5, 2053–2063 (2007)

    Google Scholar 

  666. Weissman, T.A., Riquelme, P.A., Ivic, L., Flint, A.C., Kriegstein, A.R.: Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647–661 (2004)

    Google Scholar 

  667. Werry, E.L., Liu, G.J., Bennett., M.R.: Glutamate-stimulated ATP release from spinal cord astrocytes is potentiated by substance P. J. Neurochem. 99, 924–936 (2006)

    Google Scholar 

  668. Wetherington, J., Serranoa, G., Dingledine, R.: Astrocytes in the epileptic brain. Neuron 58, 168–178 (2008)

    Google Scholar 

  669. White, J., Southgate, E., Thomson, J., Brenner, S.: The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986)

    Google Scholar 

  670. White, J.A., Rubinstein, J.T., Kay, A.R.: Channel noise in neurons. Trends. Neurosci. 23, 131–137 (2000)

    Google Scholar 

  671. Wiley, D.A., Strogatz, S.H., Girvan, M.: The size of the sync basin. Chaos 16, 015103 (2006)

    MathSciNet  Google Scholar 

  672. Williams, G.S.B., Huertas, M.A., Sobie, E.A., Jafri, M.S., Smith, G.D.: A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes. Biophys. J. 92, 2311–2328 (2007)

    Google Scholar 

  673. Williams, G.S.B., Huertas, M.A., Sobie, E.A., Jafri, M.S., Smith, G.D.: Moment closure for local control models of calcium-induced calcium release in cardiac myocytes. Biophys. J. 95, 1689–1703 (2008)

    Google Scholar 

  674. Wilson, H.R.: Computational evidence for a rivalry hierarchy in vision. Proc. Natl. Acad Sci. USA 100, 14499–144503 (2003)

    Google Scholar 

  675. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–23 (1972)

    Google Scholar 

  676. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    MATH  Google Scholar 

  677. Wilson, M.A., McNaughton, B.L.: Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994)

    Google Scholar 

  678. Wilson, H.R., Blake, R., Lee, S.H.: Dynamics of traveling waves in visual perception. Nature 412, 907–910 (2001)

    Google Scholar 

  679. Winfree, A.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  680. Wissner-Gross, Z.D., Scott, M.A., Steinmeyer, J.D., Yanik, M.F.: Synchronous symmetry breaking in neurons with different neurite counts. PLoS One 8 (2), e54905 (2013)

    Google Scholar 

  681. Wolszon, L.R., Rehder, V., Kater, S.B., Macagno, E.R.: Calcium wave fronts that cross gap junctions may signal neuronal death during development. J. Neurosci. 14, 3437–3448 (1994)

    Google Scholar 

  682. Wong, R.O.L.: Retinal waves and visual development. Ann. Rev. Neurosci. 22, 29–47 (1999)

    Google Scholar 

  683. Wu, J.: Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14, 487–502 (2008)

    Google Scholar 

  684. Wu, J.Y., Guan, L., Tsau, Y.: Propagating activation during oscillations and evoked responses in neocortical slices. J. Neurosci. 19, 5005–5015 (1999)

    Google Scholar 

  685. Wu, J., Guan, L., Bai, L., Yang, Q.: Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. J. Neurophysiol. 86, 2461–74 (2001)

    Google Scholar 

  686. Wylie, J.J., Miura, R.M.: Traveling waves in coupled reaction-diffusion models with degenerate sources. Phys. Rev. E 74, 021909 (2006)

    MathSciNet  Google Scholar 

  687. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    MathSciNet  Google Scholar 

  688. Xu, W., Huang, X., Takagaki, K., Wu, J.Y.: Compression and reflection of visually evoked cortical waves. Neuron 55, 119–129 (2007)

    Google Scholar 

  689. Yang, E., Schulman, H.: Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 274, 26199–26208 (1999)

    Google Scholar 

  690. Yao, Y., Choi, J., Parker, I.: Quantal puff of intracellular Ca2+ evoked by inositol triphosphate in Xenopus oocytes. J. Physiol. 482, 533–553 (1995)

    Google Scholar 

  691. Yoshioka, T., Blasdel, G.G., Levitt, J.B., Lund, J.S.: Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase–reactive regions in macaque monkey striate cortex. Cereb. Cortex 6, 297–310 (1996)

    Google Scholar 

  692. Young, G.W.D., Keizer, J.: A single pool IP3-receptor model for agonist stimulated Ca2+ oscillations. Proc. Nat. Acad. Sci. (USA) 89, 9895–9899 (1992)

    Google Scholar 

  693. Yuste, R., Bonhoeffer, T.: Morphological changes in dendritic spines associated with LTP. Ann. Rev. Neurosci. 24, 1071–1089 (2001)

    Google Scholar 

  694. Yuste, R., Denk, W.: Dendritic spines as a basic functional units of neuronal integration. Nature 375, 682–684 (1995)

    Google Scholar 

  695. Zahradnikova, A., Zahradnik, I.: A minimal gating model for the cardiac Ca2+ release channel. Biophys. J. 71, 2996–3012 (1996)

    Google Scholar 

  696. Zhang, L.: On the stability of traveling wave solutions in synaptically coupled neuronal networks. Diff. Int. Eq. 16, 513–536 (2003)

    MATH  Google Scholar 

  697. Zimmermann, H.: Purinergic signaling in neural development. Sem. Cell Dev. Biol. 22, 194–204 (2011)

    Google Scholar 

  698. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edn. Oxford University Press, Oxford (2002)

    Google Scholar 

  699. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Diff. Eqns. 96, 1–27 (1992)

    MathSciNet  MATH  Google Scholar 

  700. Zucker, R.S.: Short term synaptic plasticity. Ann. Rev. Neurosci. 12, 13–31 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bressloff, P.C. (2014). Population Models and Neural Fields. In: Waves in Neural Media. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8866-8_6

Download citation

Publish with us

Policies and ethics