Celestial Mechanics

  • Eugene F. Milone
  • William J. F. Wilson
Part of the Astronomy and Astrophysics Library book series (AAL)


Celestial mechanics is the topic of this chapter. The 2-body solution is given, the restricted 3-and n-body solutions discussed, and the effects of perturbations on the orbital elements are treated in detail. Tidal friction and its effects in the Earth-Moon system, spin-orbit and orbit-orbit resonances are discussed.


Solar System Orbital Element Orbital Plane Celestial Mechanic True Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J., Wisdom, J.: The outer solar system for 200 million years. Astron. J. 92, 176–194 (1986)ADSCrossRefGoogle Scholar
  2. Bradstreet, D.H., Steelman, D.P.: Binary Maker 3.0, Contact Software, Norristown, PA (2004)Google Scholar
  3. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)Google Scholar
  4. Consolmagno, G.J., Schaefer, M.W.: Worlds Apart: A Textbook in the Planetary Sciences. Prentice Hall, Englewood Cliffs, NJ (1994)Google Scholar
  5. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 1st edn. McMillan, New York (1962) (Reprinted in 1964)Google Scholar
  6. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond, VA (1988)Google Scholar
  7. Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars, and Venus with the Earth. Nature 459, 817–819 (2009)ADSCrossRefGoogle Scholar
  8. Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, 2nd edn. Springer, New York (2014)Google Scholar
  9. Montenbruck, O.: Practical Ephemeris Calculations. Springer, New york (1989) (Tr. by Armstrong A.H. of Montenbruck’s Grundlagen der Ephemeridenrechnung 3. Verlag Sterne und Weltraum Dr Vehrenberg GmbH, Munich (1987))Google Scholar
  10. Moulton, F.R.: An Introduction to Celestial Mechanics, Second revised edn. MacMillan, New York (1914) 10th Printing (1958)Google Scholar
  11. Murray, C.D., Dermott, S.F.: Solar System Dynamics. University Press, Cambridge (1999/2001).Google Scholar
  12. Neutsch, W., Scherer, K.: Celestial Mechanics: An Introduction to Classical and Contemporary Methods. B.I. Wissenschaftsverlag, Mannheim (1992)MATHGoogle Scholar
  13. Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983)Google Scholar
  14. Nobili, A.M.: Long term dynamics of the outer solar system: review of LONGSTOP project. In: The Few Body Problem, Procs. of IAU Colloquium 96. pp. 147–163 (1988)Google Scholar
  15. Peirce, B.O.: A Short Table of Integrals, 4th edn. Ginn and Co., Boston, MA (1957)Google Scholar
  16. Schlosser, W., Schmidt-Kaler, Th., Milone, E.F.: Challenges of Astronomy: Hands-On Experiments for the Sky and Laboratory. Springer-Verlag, New York (1991/1994)Google Scholar
  17. Smart, W.H.: Celestial Mechanics. Wiley, New York (1953)MATHGoogle Scholar
  18. Sussman, G.J., Wisdom, J.: Numerical evidence that the motion of Pluto is chaotic. Science 241, 433–437 (1988)ADSCrossRefGoogle Scholar
  19. Szebehely, V.G.: Adventures in Celestial Mechanics. University of Texas Press, Austin, TX (1989)MATHGoogle Scholar
  20. Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eugene F. Milone
    • 1
  • William J. F. Wilson
    • 1
  1. 1.Dept. Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations