Solar System Astrophysics pp 33-63 | Cite as

# Celestial Mechanics

Chapter

First Online:

## Abstract

Celestial mechanics is the topic of this chapter. The 2-body solution is given, the restricted 3-and n-body solutions discussed, and the effects of perturbations on the orbital elements are treated in detail. Tidal friction and its effects in the Earth-Moon system, spin-orbit and orbit-orbit resonances are discussed.

### Keywords

Mercury Titan Assure Devonian### References

- Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J., Wisdom, J.: The outer solar system for 200 million years.
*Astron. J.***92**, 176–194 (1986)ADSCrossRefGoogle Scholar - Bradstreet, D.H., Steelman, D.P.: Binary Maker 3.0
*,**Contact Software*, Norristown, PA (2004)Google Scholar - Brouwer, D., Clemence, G.M.:
*Methods of Celestial Mechanics*. Academic Press, New York (1961)Google Scholar - Consolmagno, G.J., Schaefer, M.W.:
*Worlds Apart: A Textbook in the Planetary Sciences*. Prentice Hall, Englewood Cliffs, NJ (1994)Google Scholar - Danby, J.M.A.:
*Fundamentals of Celestial Mechanics*, 1st edn. McMillan, New York (1962) (Reprinted in 1964)Google Scholar - Danby, J.M.A.:
*Fundamentals of Celestial Mechanics*, 2nd edn. Willmann-Bell, Richmond, VA (1988)Google Scholar - Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars, and Venus with the Earth.
*Nature***459**, 817–819 (2009)ADSCrossRefGoogle Scholar - Milone, E.F., Wilson, W.J.F.:
*Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System*, 2nd edn. Springer, New York (2014)Google Scholar - Montenbruck, O.:
*Practical Ephemeris Calculations*. Springer, New york (1989) (Tr. by Armstrong A.H. of Montenbruck’s*Grundlagen der Ephemeridenrechnung*3. Verlag Sterne und Weltraum Dr Vehrenberg GmbH, Munich (1987))Google Scholar - Moulton, F.R.:
*An Introduction to Celestial Mechanics*, Second revised edn. MacMillan, New York (1914) 10th Printing (1958)Google Scholar - Murray, C.D., Dermott, S.F.:
*Solar System Dynamics*. University Press, Cambridge (1999/2001).Google Scholar - Neutsch, W., Scherer, K.:
*Celestial Mechanics: An Introduction to Classical and Contemporary Methods*. B.I. Wissenschaftsverlag, Mannheim (1992)MATHGoogle Scholar - Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries.
*Astron. Astrophys*.**125**, 150–167 (1983)Google Scholar - Nobili, A.M.: Long term dynamics of the outer solar system: review of LONGSTOP project. In: The Few Body Problem,
*Procs. of IAU Colloquium 96*. pp. 147–163 (1988)Google Scholar - Peirce, B.O.:
*A Short Table of Integrals*, 4th edn. Ginn and Co., Boston, MA (1957)Google Scholar - Schlosser, W., Schmidt-Kaler, Th., Milone, E.F.:
*Challenges of Astronomy: Hands-On Experiments for the Sky and Laboratory*. Springer-Verlag, New York (1991/1994)Google Scholar - Smart, W.H.:
*Celestial Mechanics*. Wiley, New York (1953)MATHGoogle Scholar - Sussman, G.J., Wisdom, J.: Numerical evidence that the motion of Pluto is chaotic.
*Science***241**, 433–437 (1988)ADSCrossRefGoogle Scholar - Szebehely, V.G.:
*Adventures in Celestial Mechanics*. University of Texas Press, Austin, TX (1989)MATHGoogle Scholar - Wisdom, J., Holman, M.: Symplectic maps for the N-body problem.
*Astron. J*.**102**, 1528–1538 (1991)ADSCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 2014