Celestial Mechanics

  • Eugene F. Milone
  • William J. F. Wilson
Part of the Astronomy and Astrophysics Library book series (AAL)


Celestial mechanics is the topic of this chapter. The 2-body solution is given, the restricted 3-and n-body solutions discussed, and the effects of perturbations on the orbital elements are treated in detail. Tidal friction and its effects in the Earth-Moon system, spin-orbit and orbit-orbit resonances are discussed.


Mercury Titan Assure Devonian 


  1. Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J., Wisdom, J.: The outer solar system for 200 million years. Astron. J. 92, 176–194 (1986)ADSCrossRefGoogle Scholar
  2. Bradstreet, D.H., Steelman, D.P.: Binary Maker 3.0, Contact Software, Norristown, PA (2004)Google Scholar
  3. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)Google Scholar
  4. Consolmagno, G.J., Schaefer, M.W.: Worlds Apart: A Textbook in the Planetary Sciences. Prentice Hall, Englewood Cliffs, NJ (1994)Google Scholar
  5. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 1st edn. McMillan, New York (1962) (Reprinted in 1964)Google Scholar
  6. Danby, J.M.A.: Fundamentals of Celestial Mechanics, 2nd edn. Willmann-Bell, Richmond, VA (1988)Google Scholar
  7. Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars, and Venus with the Earth. Nature 459, 817–819 (2009)ADSCrossRefGoogle Scholar
  8. Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, 2nd edn. Springer, New York (2014)Google Scholar
  9. Montenbruck, O.: Practical Ephemeris Calculations. Springer, New york (1989) (Tr. by Armstrong A.H. of Montenbruck’s Grundlagen der Ephemeridenrechnung 3. Verlag Sterne und Weltraum Dr Vehrenberg GmbH, Munich (1987))Google Scholar
  10. Moulton, F.R.: An Introduction to Celestial Mechanics, Second revised edn. MacMillan, New York (1914) 10th Printing (1958)Google Scholar
  11. Murray, C.D., Dermott, S.F.: Solar System Dynamics. University Press, Cambridge (1999/2001).Google Scholar
  12. Neutsch, W., Scherer, K.: Celestial Mechanics: An Introduction to Classical and Contemporary Methods. B.I. Wissenschaftsverlag, Mannheim (1992)MATHGoogle Scholar
  13. Newhall, X.X., Standish, E.M., Williams, J.G.: DE 102: a numerically integrated ephemeris of the moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983)Google Scholar
  14. Nobili, A.M.: Long term dynamics of the outer solar system: review of LONGSTOP project. In: The Few Body Problem, Procs. of IAU Colloquium 96. pp. 147–163 (1988)Google Scholar
  15. Peirce, B.O.: A Short Table of Integrals, 4th edn. Ginn and Co., Boston, MA (1957)Google Scholar
  16. Schlosser, W., Schmidt-Kaler, Th., Milone, E.F.: Challenges of Astronomy: Hands-On Experiments for the Sky and Laboratory. Springer-Verlag, New York (1991/1994)Google Scholar
  17. Smart, W.H.: Celestial Mechanics. Wiley, New York (1953)MATHGoogle Scholar
  18. Sussman, G.J., Wisdom, J.: Numerical evidence that the motion of Pluto is chaotic. Science 241, 433–437 (1988)ADSCrossRefGoogle Scholar
  19. Szebehely, V.G.: Adventures in Celestial Mechanics. University of Texas Press, Austin, TX (1989)MATHGoogle Scholar
  20. Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1528–1538 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eugene F. Milone
    • 1
  • William J. F. Wilson
    • 1
  1. 1.Dept. Physics & AstronomyUniversity of CalgaryCalgaryCanada

Personalised recommendations