Advertisement

Wireless Sensor Networks: A Key Enabling Technology for Remote Healthcare

  • Steffen Ortmann
  • Peter Langendoerfer
  • Marcin Brzozowski
  • Krzysztof Piotrowski
Chapter

Abstract

Recent advances in ICT and sensing technologies have created exciting options for individualised sensing and health monitoring. Wireless Sensor Networks (WSN) that are built of lightweight and autonomous devices called sensor nodes are a concrete example of such technologies. Each sensor node typically combines individual sensing, processing and wireless communication features into one small device. This chapter motivates the use of WSN as a key enabler for remote health care by introducing the manifold facilities and use cases of that technology. Based on that, it discusses the architectural basics and provides insights into practical system design issues, especially in view of reliability, energy efficiency and security of the system. After that an assessment of design goals and most critical challenges for applying WSN in health care is given. The chapter finally closes with presenting several selected solutions that successfully tackle introduced challenges.

Keywords

Sensor Node Wireless Sensor Network Medium Access Control Medium Access Control Protocol Medium Access Control Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdelzaher TF et al (2004) EnviroTrack: towards an environmental computing paradigm for distributed sensor networks. In: Proceedings of the 24th international conference on distributed computing systems (ICDCS 04), IEEE CS Press, pp 582–589Google Scholar
  2. Aboelaze M, Aloul F (2005) Current and future trends in sensor networks: a survey. In: Proceedings of second IFIP international conference on wireless and optical communications networks WOCN, Dubai, pp 551–555Google Scholar
  3. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38:393–422CrossRefGoogle Scholar
  4. Basmer T, Genschow G, Fröhlich M, Birkholz M (2012) Energy budget of an implantable glucose measuring system. Biomed Technol 57:259–262Google Scholar
  5. Birkholz M et al (2009) Mikroviskosimeter zur kontinuierlichen Glucosemessung bei Diabetis mellitus. In: Proceedings of Mikrosystemtechnik-Kongress. VDE-Verlag, Berlin, 124pGoogle Scholar
  6. Bohn J, Coroama V, Langheinrich M, Mattern F, Rohs M (2004) Living in a world of smart everyday objects—social, economic, and ethical implications. J Hum Ecol Risk Assess 10:763–786CrossRefGoogle Scholar
  7. Brzozowski M, Salomon H, Langendoerfer P (2009) Completely distributed low duty cycle communication for long-living sensor networks. In: Proceedings of the 2009 international conference on computational science and engineering (CSE ‘09), vol 2. IEEE Computer Society, Washington, DC, pp 109–116Google Scholar
  8. Brzozowski M, Salomon H, Langendoerfer P (2010a) On efficient clock drift prediction means and their applicability to IEEE 802.15.4. In: Proceedings of the 2010 IEEE/IFIP international conference on embedded and ubiquitous computing (EUC ‘10). IEEE Computer Society, Washington, DC, pp 216–223Google Scholar
  9. Brzozowski M, Salomon H, Langendoerfer P (2010b) ILA: idle listening avoidance in scheduled wireless sensor networks. In: Osipov E, Kassler A, Bohnert TM, Masip-Bruin X (eds) Proceedings of the eighth international conference on wired/wireless internet communications (WWIC’10). Springer, Berlin, pp 363–374CrossRefGoogle Scholar
  10. Brzozowski M, Salomon H, Langendoerfer P (2010c) Limiting end-to-end delays in long-lasting sensor networks. In: Proceedings of the eighth ACM international workshop on mobility management and wireless access (MobiWac ‘10). ACM, New York, NY, pp 11–20Google Scholar
  11. Brzozowski M, Salomon H, Langendoerfer P (2012) Support for a long lifetime and short end-to-end delays with TDMA protocols in sensor networks. Paper presented at the International Journal of Distributed Sensor Networks, Article ID 651748Google Scholar
  12. Burns A et al (2010) SHIMMER™—a wireless sensor platform for noninvasive biomedical research. IEEE Sens J 10(9):1527–1534CrossRefGoogle Scholar
  13. Burri N, Rickenbach P, Wattenhofer RR (2007) Dozer: ultra-low power data gathering in sensor networks. In: Proceedings of the sixth international conference on Information processing in sensor networks (IPSN ‘07). ACM, New York, NY, pp 450–459Google Scholar
  14. Chang N, Zhang QY, Cungang Y (2007) A lightweight security protocol for wireless sensor networks. In: Proceedings of the international workshop on telecommunications—IWT/07Google Scholar
  15. Chen T, Mazomenos E, Maharatna K, Dasmahapatra S, Niranjan M (2012) On the trade-off of accuracy and computational complexity for classifying normal and abnormal ECG in remote CVD monitoring systems. In: Proceeding of the IEEE workshop on signal processing systems (SiPS), Quebec, pp 37–42Google Scholar
  16. ATMEL Corporation (2010a) AT91SAM9G20 preliminary. http://www.atmel.com/dyn/resources/prod documents/doc6384.pdf. Accessed May 2013
  17. ATMEL Corporation (2010b) ATmega640/1280/1281/2560/2561 preliminary. http://www.atmel.com/dyn/resources/proddocuments/doc2549.pdf. Accessed May 2013
  18. ATMEL Corporation (2011) ATmega128(L). http://www.atmel.com/dyn/resources/proddocuments/doc2467.pdf. Accessed May 2013
  19. Costa P, Mottola L, Murphy AL, Picco GP (2007) Programming wireless sensor networks with the TeenyLIME middleware. In Proceedings of the eighth ACM/IFIP/USENIX international middleware conference (Middleware 2007), Newport Beach, CA, pp 26–30Google Scholar
  20. Crosby SA, Wallach DS (2009) Efficient data structures for tamper evident logging. In: Proceedings of the 18th USENIX security symposium, Montreal, CAGoogle Scholar
  21. Dikaiakos MD, Florides A, Nadeem T, Iftode L (2007) Location-aware services over vehicular ad-hoc networks using car-to-car communication. IEEE J Sel Areas Commun 25(8):1590–1602CrossRefGoogle Scholar
  22. Dyka Z, Langendoerfer P (2005) Area efficient hardware implementation of elliptic curve cryptography by iteratively applying Karatsuba’s method. In: Proceedings of design, automation and test in Europe, IEEEGoogle Scholar
  23. Edwards J (2012) Wireless sensors relay medical insight to patients and caregivers [special reports]. IEEE Signal Process Mag 3(29):8–12CrossRefGoogle Scholar
  24. Farooq MO, Dogar AB, Shah GA (2010) MR-LEACH: multi-hop routing with low energy adaptive clustering hierarchy. In Proceedings of the 2010 Fourth international conference on sensor technologies and applications (SENSORCOMM ‘10). IEEE Computer Society, Washington, DC, pp 262–268Google Scholar
  25. Fröhlich M et al (2012) Biostability of an implantable glucose sensor chip. IOP Conf Ser Mater Sci Eng 41:012022CrossRefGoogle Scholar
  26. Gellersen HW, Schmidt A, Beigl M (2000) Adding some smartness to devices and everyday things. In: Proceedings of third IEEE workshop on mobile computing systems and applications, Monterey, CA, pp 3–10Google Scholar
  27. Gillies D, Thornley DJ, Bisdikian C (2009) Probabilistic approaches to estimating the quality of information in military sensor networks. Comput JGoogle Scholar
  28. Girao J, Westhoff D, Mykletun E, Araki T (2007) Tinypeds: tiny persistent encrypted data storage in asynchronous wireless sensor networks. Ad Hoc Netw J 5(7):1073–1089CrossRefGoogle Scholar
  29. Gummadi R, Gnawali O, Govindan R (2005) Macro-programming wireless sensor networks using kairos. In: Proceedings of the international conference on distributed computing in sensor systems (DCOSS 05), LNCS 3560, Springer, Heidelberg, pp 126–140Google Scholar
  30. Halperin D et al. (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: Proceedings of IEEE symposium on security and privacy, Washington, DC, pp 129–142Google Scholar
  31. Heuschmann PU et al (2010) Schlaganfallhäufigkeit und Versorgung von Schlaganfallpatienten in Deutschland. Aktuelle Neurol 7:333–340CrossRefGoogle Scholar
  32. Hoon CL (2009) Practical broadcast authentication using short-lived signatures in WSNs. Information security applications, Lecture Notes in Computer Science 5932:366–383Google Scholar
  33. Kahn JM, Katz RH, Pister KSJ (1999) Next century challenges: mobile networking for “smart dust”. In: Proceedings of international conference on mobile computing and networking (MOBICOM), Seattle, pp 271–278Google Scholar
  34. Kahn JM, Katz RH, Pister KSJ (2000) Emerging challenges: mobile networking for smart dust. J Commun Netw 2(3):188–196Google Scholar
  35. Kao CW, Friedmann E, Thomas SA (2010) Quality of life predicts one-year survival in patients with implantable cardioverter defibrillators. Qual Life Res 19(3):307–315CrossRefGoogle Scholar
  36. Karlof C, Sastry N, Wagner D (2004) TinySec: a link layer security architecture for wireless sensor networks. In: Proceedings of the second international conference on embedded networked sensor systems, Baltimore, MD, Nov 2004, pp 162–175Google Scholar
  37. Kirchhof P, Adamou A, Knight E, Lip GYH, Norrving B, de Pouvourville G (2009) How can we avoid a stroke crisis? ISBN 978-1-903539-09-5Google Scholar
  38. Lab-on-Chip-System (2011) Lab-on-Chip-System. Medizin&Technik, http://www.medizin-und-technik.de/home/-/article/27544623/35089533?returnToFullPageURL=back. Accessed May 2013
  39. Liang CJM, Terzis A (2008) Koala: ultra-low power data retrieval in wireless sensor networks. In: Proceedings of the seventh international conference on Information processing in sensor networks. IEEE Computer SocietyGoogle Scholar
  40. Lin E-YA, Rabaey JM, Wolisz A (2004) Power-efficient rendez-vous schemes for dense wireless sensor networks. In: IEEE international conference on communications, vol 7, EnschedeGoogle Scholar
  41. Maaser M, Ortmann S (2010) Remote medical treatment at home using the using the Java mobile sensor API. In: Proceedings of the third international workshop on smart homes for tele-health (SmartTel ‘10), Miami, USAGoogle Scholar
  42. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173CrossRefGoogle Scholar
  43. Mainwaring A, Culler D, PolastreJ, Szewczyk R, Anderson J (2002) Wireless sensor networks for habitat monitoring. In: Proceedings of the first ACM international workshop on wireless sensor networks and applications (WSNA ‘02). ACM, New York, NY, pp 88–97Google Scholar
  44. Marvel (2010) PXA27x Specification update. http://www.marvell.com/products/processors/applications/pxafamily/pxa27x emts.pdf. Accessed April 2013
  45. Morchon OG, Falck T, Heer T, Wehrle K (2009) Security for pervasive medical sensor networks. In: Proceedings of sixth annual international conference on mobile and ubiquitous systems (MobiQuitous 2009), Toronto, CanadaGoogle Scholar
  46. Naqvi S, Dallons G, Michot A, Ponsard C (2010) Assuring privacy of medical records in an open collaborative environment—a case study of Walloon Region™ eHealth platform. Privacy and identity management for life, vol 320. Springer, Berlin, pp 146–159. ISBN:978-3-642-14281-9. http://dx.doi.org/10.1007/978-3-642-14282-6_12Google Scholar
  47. Ortmann S, Maaser M (2011) Enabling secure and privacy-aware mobile sensing and e-health applications on everybodys smartphone. In: First IEEE international conference on consumer electronics-Berlin (ICCE-Berlin 2011), BerlinGoogle Scholar
  48. Ortmann S, Maaser M, Parandian B, Schultz M (2011) Telemedizinisch assistierte ambulante Betreuung von Patienten, vol 4. Deutscher AAL-Kongress, BerlinGoogle Scholar
  49. Ortmann S, Langendoerfer P, Sik-Lanyi C (2012) Telemedical assistance for ambulant rehabilitation of stroke patients. In: Proceedings of the ninth world congress on brain injury, Edinburgh, ScotlandGoogle Scholar
  50. Panic G, Dietterle D, Stamenkovic Z (2008) Architecture of a power-gated wireless sensor node. In: Proceedings of 11th EUROMICRO conference on digital system design architectures, methods and tools (DSD’08), IEEE, ParmaGoogle Scholar
  51. Panic G, Basmer T, Schrape O, Peter S, Vater F, Tittelbach-Helmrich K (2011) Sensor node processor for security applications. In: Proceedings of the 18th IEEE international conference on electronics, circuits and systems (ICECS 2011), BeirutGoogle Scholar
  52. Park T, Shin KG (2004) LiSP: a lightweight security protocol for wireless sensor networks. ACM Trans Embed Comput Syst 3(3):634–660CrossRefGoogle Scholar
  53. Patel et al (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9(12):1–17Google Scholar
  54. Perrig A, Szewczyk R, Wen V, Culler D and Tygar JD (2001) SPINS: Security protocols for sensor networks. In: Proceedings of seventh annual international conference on mobile computing and networking, Rome, Italy, Aug 2001, pp 188–189Google Scholar
  55. Piotrowski K, Langendoerfer P, Peter S (2009) tinyDSM: a highly reliable cooperative data storage for wireless sensor networks. In: Proceedings of the 2009 international symposium on collaborative technologies and systems (CTS ‘09), Washington, DC, pp 225–232Google Scholar
  56. Piotrowski K, Sojka A, Langendoerfer P (2010) Body area network for first responders: a case study. In: Proceedings of the fifth international conference on body area networks (BodyNets ‘10), ACM, New York, NY, pp 37–40. doi: 10.1145/2221924.2221933
  57. Polastre J, Hill J, Culler D (2004) Versatile low power media access for wireless sensor networks. In: Proceedings of the second international conference on embedded networked sensor systems. ACM, New YorkGoogle Scholar
  58. Robinson P, Beigl M (2003) Trust context spaces: an infrastructure for pervasive security in context-aware environments. In: Proceedings of first international conference of security in pervasive computing. Springer, Berlin, pp 157–172Google Scholar
  59. Sandler D, Derr K, Crosby S, Wallach DS (2008) Finding the evidence in Tamper-Evident logs. In: Proceedings of third international workshop on systematic approaches to digital forensic engineering (SADFE ‘08), Berkeley, pp 69–75Google Scholar
  60. Scheffler T, Schindler S, Lewerenz M, Schnor B (2011) A privacy-aware localization service for healthcare environments. In: Proceedings of the fourth international conference on pervasive technologies related to assistive environments (PETRA ‘11). ACM, New YorkGoogle Scholar
  61. Schurgers C, Tsiatsis V, Ganeriwal S, Srivastava M (2002) Optimizing sensor networks in the energy-latency-density design space. IEEE Trans Mob Comput 1:70–80CrossRefGoogle Scholar
  62. Shaikh, R. A., Lee, S., Khan, M. A., & Song, Y. J. (2006). LSec: Lightweight security protocol for distributed wireless sensor network. In Personal Wireless Communications (pp. 367–377). Springer Berlin Heidelberg.Google Scholar
  63. Shemshaki M, Shahhoseini HS (2009) Energy efficient clustering algorithm with multi-hop transmission. In: Proceedings of the 2009 international conference on scalable computing and communications; eighth international conference on embedded computing (SCALCOM-EMBEDDEDCOM ‘09). IEEE Computer Society, Washington, DC, pp 459–462Google Scholar
  64. Sojka A, Piotrowski K, Langendoerfer P (2010) ShortECC: a lightweight security approach for wireless sensor networks. In: Proceedings of INSTICC international conference on security and cryptography, SECRYPTGoogle Scholar
  65. Stecklina O, Langendoerfer P, Goltz C (2013) A fair energy trade multi-hop routing in wireless sensor networks. In: Proceedings of the sixth joint IFIP wireless & mobile networking conference (WMNC2013), DubaiGoogle Scholar
  66. Sun T, Chen LJ, Han CC, Gerla M (2005) Reliable sensor networks for planet exploration. In: Chen LJ (ed) Proceedings of IEEE networking, sensing and control, Tucson, USA, pp 816–821Google Scholar
  67. Texas Instruments Inc. (2007a) 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver. http://www.ti.com/lit/gpn/cc2420. Accessed May 2013
  68. Texas Instruments Inc. (2007b) 2.4 GHz IEEE 802.15.4/ZIGBEE RF TRANSCEIVER. http://www.ti.com/lit/gpn/cc2520. Accessed May 2013
  69. Texas Instruments Inc. (2007c) Single-chip very low power RF transceiver. http://www.ti.com/lit/gpn/cc1000. Accessed May 2013
  70. Texas Instruments Inc. (2009) Low-cost low-power 2.4 GHz RF transceiver. http://www.ti.com/lit/gpn/cc2500. Accessed May 2013
  71. Texas Instruments Inc. (2010a) CC1101 low-power Sub-1 GHz RF transceiver. http://www.ti.com/lit/gpn/cc1101. Accessed May 2013
  72. Texas Instruments Inc. (2010b) CC430F613x, CC430F612x, CC430F513x MSP430 SoC with RF core. http://www.ti.com/lit/gpn/cc430f6137. Accessed May 2013
  73. Texas Instruments Inc. (2010c) MSP430F543xA, MSP430F541xA Mixed signal microcontroller. http://www.ti.com/lit/gpn/msp430f5438a. Accessed May 2013
  74. Texas Instruments Inc. (2011) MSP430F15x, MSP430F16x, MSP430F161x mixed signal microcontroller. http://www.ti.com/lit/gpn/msp430f1611. Accessed May 2013
  75. Ugus O et al (2009) Optimized implementation of elliptic curve based additive homomorphic encryption for wireless sensor networks. arXiv preprint arXiv:0903.3900Google Scholar
  76. Uhsadel L, Poschmann A, Paar C (2007) Enabling full-size public-key algorithms on 8-bit sensor nodes. Security and privacy in ad-hoc and sensor networks. Springer, Berlin, pp 73–86CrossRefGoogle Scholar
  77. Wei Y, Heidemann J, Estrin D (2002) An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the twenty-first annual joint conference of the ieee computer and communications societies (INFOCOM 2002), vol 3, IEEE, New YorkGoogle Scholar
  78. Weiser M (1991) The computer for the twenty-first century. Sci Am 265(3):66–75CrossRefGoogle Scholar
  79. Werner-Allen G, Johnson J, Ruiz M, Lees J, Welsh M (2005) Monitoring volcanic eruptions with a wireless sensor network. In: Proceedings of the second European workshop on wireless sensor networks, Istanbul, pp 108–120Google Scholar
  80. Westin AF (1967) Privacy and freedom. Atheneum, New YorkGoogle Scholar
  81. Yao Y, Gehrke JE (2002) The cougar approach to in-network query processing in sensor networks. ACM Sigmod Rec 31(2):9–18CrossRefGoogle Scholar
  82. Younis O, Fahmy S (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 03(4):366–379CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Steffen Ortmann
    • 1
  • Peter Langendoerfer
    • 1
  • Marcin Brzozowski
    • 1
  • Krzysztof Piotrowski
    • 1
  1. 1.IHP GmbH—Innovations for High-Performance MicroelectronicsFrankfurt (Oder)Germany

Personalised recommendations