Skip to main content

Signal Processing Architecture Implementation Methodologies for Next-Generation Remote Healthcare Systems

  • Chapter
  • First Online:
Systems Design for Remote Healthcare

Abstract

Remote healthcare, an emerging application with limited resources, requires sophisticated signal processing algorithms and their efficient architectural implementation methodologies. Direct mapping of traditional signal processing algorithms to hardware may not be suitable for such resource constrained applications. It is therefore necessary to explore the signal processing algorithms used for this applications and their corresponding low complexity and low power consumption architectural implementation using an algorithm-architecture holistic optimization approach. This chapter identifies and does the review on the traditional computationally intensive signal processing algorithms which are of significant use for healthcare related applications, focuses on the corresponding low-complexity architecture design and formulates the model of computing the overall hardware complexity of these architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Distribution of energy i.e. square modulus of the wavelet coefficients of the signal in time-scale plane (Rioul and Vetterli 1991).

  2. 2.

    Distribution of energy i.e. square modulus of the Fourier coefficients in time-frequency plane (Rioul and Vetterli 1991).

References

  • Acharyya A, Maharatna K, Al-Hashimi BM (2010) Co-ordinate rotation based low complexity 2D FastICA algorithm and architecture. In: IEEE International Conference on Green Circuits and Systems, pp 60–64, 21–23 June, 2010, Shanghai, China

    Google Scholar 

  • Acharyya A, Maharatna K, Al-Hashimi BM, Gunn SR (2009a) Memory reduction methodology for distributed-arithmetic-based DWT/IDWT exploiting data symmetry. IEEE Trans Circ Syst II Express Briefs 56(4):285–289

    Article  Google Scholar 

  • Acharyya A, Maharatna K, Al-Hashimi BM (2009b) Hardware reduction methodology for 2-dimensional kurtotic fast ICA based on algorithmic analysis and architectural symmetry. In: IEEE workshop on signal processing systems, October, 2009

    Google Scholar 

  • Acharyya A, Maharatna K, Al-Hashimi BM, Reeve J (2011) Co-ordinate rotation based low complexity N-D FastICA algorithm and architecture. IEEE Trans Signal Process 59(8):3997–4011

    Article  MathSciNet  Google Scholar 

  • Addison P (2004) The little wave with the big future. Phys. world 17:35–39

    Google Scholar 

  • Addison PS (2006) Wavelet transforms and the ECG: a review. Physiol Meas 26

    Google Scholar 

  • Akay M (1997) Wavelet applications in medicine. IEEE Spectrum 50–56

    Google Scholar 

  • Alam M, Rahman CA, Badawy W, Jullien G (2003) Efficient distributed arithmetic based DWT architecture for multimedia applications. In: IEEE international workshop on system-on-chip for real-time applications, pp 333–336

    Google Scholar 

  • Aldroubi A, Unser MA (1996) Wavelets in medicine and biology. CRC Press, Boca Raton, FL. http://www.crcpress.com/product/isbn/9780849394836

  • Aoyagi T, Tokutaka H, Fujimura F, Maniwa T (2002) Application of FastICA to pulse wave. In: Proceedings of the 9th international conference on neural information processing (ICONIP), vol 2, pp 769–772

    Google Scholar 

  • Barros AK, Mansour A, Ohnishi N (1998) Removing artifacts from electrocardiographic signals using independent component analysis. Neurocomputing 22:173–186

    Article  MATH  Google Scholar 

  • Bellaouar A, Elmasry MI (1995) Low-power digital VLSI design: circuits and systems. Springer. http://www.springer.com/engineering/circuits+%26+systems/book/978-0-7923-9587-4

  • Bentley PM, McDonnell JTE (1994) Wavelet transforms: an introduction. Electron Comm Eng J 175–186

    Google Scholar 

  • Bravo I, Jim\(\acute{e}\)nez P, Mazo M, L\(\acute{a}\)zaro JL, Gardel A (2006) Implementation in FPGAs of Jacobi method to Solve the eigenvalue and eigenvector problem. In: International conf. field prog. logic and applications

    Google Scholar 

  • Bravo I, et al (2008) Novel HW architecture based on FPGAs oriented to solve the eigen problem. IEEE Trans VLSI Syst 16(12)

    Google Scholar 

  • Brent RP, Luk FT, Loan CV (1985) Computation of the singular value decomposition using mesh connected processors. J VLSI Comput Syst 1(3):242–270

    MathSciNet  MATH  Google Scholar 

  • Burleson WP (1990) Polynomial evaluation in VLSI using distributed arithmetic. IEEE Trans Circ Syst 37(10):1299–1304

    Article  Google Scholar 

  • Calhoun VD, Adali T (2006) Unmixing fMRI with independent component analysis. IEEE Eng Med Biol Mag 79–90

    Google Scholar 

  • Cao X, Xie Q, Peng C, Wang Q, Yu D (2006) An efficient VLSI implementation of distributed architecture for DWT. In: IEEE 8th workshop multimedia signal processing, pp 364–367

    Google Scholar 

  • Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86(10):2009–2025

    Article  Google Scholar 

  • Cavallaro JR, Luk FT (1988) CORDIC arithmetic for an SVD processor. J Parallel Distr Comput 5:271–290

    Article  Google Scholar 

  • Chen X, Zhou T, Zhang Q, Li W, Min H (1996) A VLSI architecture for discrete wavelet transform. IEEE Int Conf Image Process 1:1003–1006

    Article  Google Scholar 

  • Chien JC, Huang MC, Lin YD, Chong F (2006) A study of heart sound and lung sound separation by independent component analysis technique. In: 28th Annual intl conference of the IEEE engg in medicine and biology society, pp 5708–5711

    Google Scholar 

  • Chui CK (1992) An introduction to wavelets. Academic, San Diego, CA

    MATH  Google Scholar 

  • Cichocki A (1999) What is intelligent blind signal processing and why it is important in brain science? RIKEN Brain Science Institute News, Japan, no. 4, June, 1999

    Google Scholar 

  • Cichocki A, Amari S (2002) Adaptive blind signal and image processing: learning algorithms and applications. Wiley. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471607916.html

  • Cohen A, Kovacevic J (1996) Wavelets: The mathematical background. Proc IEEE 84(4):514–522

    Article  Google Scholar 

  • Comani S, Liberati M, Mantini D, Gabriele E, Brisinda D, Luzio SD, Fenici R, Luca G (2004) Characterization of fetal arrhythmias by means of fetal magnetocardiography in three cases of difficult ultrasonographic imaging. Pacing Clin Physiol (PACE) 27(12):1647–1655

    Article  Google Scholar 

  • Daubechis I (1992) Ten lectures on wavelets. SIAM. http://www.cambridge.org/us/academic/subjects/mathematics/abstract-analysis/ten-lectures-wavelets

  • Denk TC, Parhi KK (1997) VLSI architectures for lattice structure based orthonormal discrete wavelet transforms. IEEE Trans Circ Syst II Analog Digital Signal Process 44(2):129–132

    Article  Google Scholar 

  • Du H, Qi H, Wang X (2007) Comparative study of VLSI solutions to independent component analysis. IEEE Trans Ind Electron 54(1)

    Google Scholar 

  • Fridman J, Manolakos ES (1994) Distributed memory and control VLSI architectures for the 1-D discrete wavelet transform. IEEE Workshop VLSI Signal Process VII:388–397

    Google Scholar 

  • Götze J, Hekstra GJ (1995) An algorithm and architecture based on orthonormal μ-rotations for computing the symmetric EVD. Integrat VLSI J 20:21–39

    Article  MATH  Google Scholar 

  • Götze J, Paul S, Sauer M (1993) An efficient Jacobi-like algorithm for parallel eigenvalue computation. IEEE Trans Comput 42(9)

    Google Scholar 

  • Graps A (1995) An introduction to wavelets. IEEE Comput Sci Eng 2(2):50–61

    Article  Google Scholar 

  • Grzeszczak A, Yeap TH, Panchanathan S (1994) VLSI architecture for discrete wavelet transform. Can Conf Electr Comput Eng 2:461–464

    Article  Google Scholar 

  • Grzeszczak A, Mandal MK, Panchanathan S, Yeap T (1996) VLSI implementation of discrete wavelet transform. IEEE Trans Very Large Scale Integrat (VLSI) Syst 4(4):421–433

    Article  Google Scholar 

  • He T, Clifford G, Tarassenko L (2006) Application of independent component analysis in removing artefacts from the electrocardiogram. Neural Comput Appl 15:105–116

    Article  Google Scholar 

  • Hsiao SF, Delosme JM (1996) Parallel singular value decomposition of complex matrices using multidimensional CORDIC algorithms. IEEE Trans Signal Process 44(3)

    Google Scholar 

  • Hu YH (1992) CORDIC based VLSI architecture for digital signal processing. IEEE Signal Process Mag 16–35

    Google Scholar 

  • Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Network 10(3)

    Google Scholar 

  • Hyvärinen A, Oja E (2000) Independent component analysis: Algorithms and applications. Neural Networks 13(4–5):411–430

    Article  Google Scholar 

  • Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  • Jou JM, Shiau YH, Liu CC (2001) Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme. IEEE Int Symp Circ Syst 529–532

    Google Scholar 

  • Jutten C, Herault J (1991) Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. J Signal Process 24:1–10. Elsevier Science Publishers

    Google Scholar 

  • Karvounis EC, Tsipouras MG, Fotiadis DI, Naka KK (2007) An automated methodology for fetal heart rate extraction from the abdominal electrocardiogram. IEEE Trans Inform Tech Biomed 11:628–638

    Article  Google Scholar 

  • Knowels G (1990) VLSI architecture for the discrete wavelet transform. Electron Lett 26(15):1184–1185

    Article  Google Scholar 

  • Li C, Zheng C, Tai C (1995) Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 42:21–28

    Article  Google Scholar 

  • Lo B, Deligianni F, Yang GZ (2006) Source recovery for body sensor network. In: IEEE international workshop on wearable and implantable body sensor networks, April, 2006

    Google Scholar 

  • Majithia JC (1973) Pipeline array for square-root extraction. Electron Lett 9(1):4–5

    Article  Google Scholar 

  • Mallat SG (1999) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7)

    Google Scholar 

  • Martina M, Masera G (2006) Low-complexity, efficient 9/7 wavelet filters VLSI implementation. IEEE Trans Circ Syst II Express Briefs 53(11):1289–1293

    Article  Google Scholar 

  • Martina M, Masera G (2007) Multiplierless, folded 9/7 – 5/3 wavelet VLSI architecture. IEEE Trans Circ Syst II Express Briefs 54(9):770–774

    Article  Google Scholar 

  • Mutihac R, Mutihac RC (20007) A comparative study of independent component analysis algorithms for electroencephalography. Rom Rep Phys 59(3):827–853

    Google Scholar 

  • Oja E, Yuan Z (2006) The FastICA algorithm revisited: convergence analysis. IEEE Trans Neural Network 17(6)

    Google Scholar 

  • Oweiss KG, Mason A, Suhail Y, Kamboh AM, Thomson KE (2007) A scalable wavelet transform VLSI architecture for real-time signal processing in high-density intra-cortical implants. IEEE Trans Circ Syst I Regular Papers 54(6)):1266–1278

    Google Scholar 

  • Pan Q, Zhang L, Dai G, Zhang H (1999) Two denoising methods by wavelet transform. IEEE Trans Signal Process 47:3401–3406

    Article  MATH  Google Scholar 

  • Parhi KK, Nishitani T (1993) VLSI architectures for discrete wavelet transforms. IEEE Trans Very Large Scale Integrat (VLSI) Syst 1(2):191–202

    Article  Google Scholar 

  • Pourazad MT, Moussavi Z, Farahmand F, Ward RK (2005) Heart sounds separation from lung sounds using independent component analysis. In: IEEE Annual conference on engineering in medicine and biology, pp 2736–2739

    Google Scholar 

  • Rioul O, Vetterli M (1991) Wavelets and signal processing. IEEE Signal Process Mag 14–38

    Google Scholar 

  • Rioul O, Duhamel P (1992) Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans Inform. Theory 38(2):569–586

    Article  MathSciNet  MATH  Google Scholar 

  • Rioul O (1993) A discrete-time multiresolution theory. IEEE Trans Signal Process 41(8):2591–2606

    Article  MATH  Google Scholar 

  • Roberts S, Everson R (2001) Independent component analysis: Principles and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Senhadji L, Carrault G, Bellanger JJ, Passariello G (1995) Comparing wavelet transforms for recognizing cardiac patterns, IEEE Eng Med Biol Mag 14:167–173

    Article  Google Scholar 

  • Shyu KK, Lee MH, Wu YT, Lee PL (2008) Implementation of pipelined FastICA on FPGA for real-time blind source separation. IEEE Trans Neural Network 19(6):958–970

    Article  Google Scholar 

  • Stone JV (2004) Independent component analysis: A tutorial introduction. MIT Press

    Google Scholar 

  • Strang G (1989) Wavelets and dilation equations: a brief introduction. SIAM Rev Soc Ind Appl Math 31(4):614–6127

    MathSciNet  MATH  Google Scholar 

  • Taylor FJ (1986) An analysis of the distributed arithmetic digital filter. IEEE Trans Acoust Speech Signal Process 34(5):1165–1170

    Article  Google Scholar 

  • Tie Y, Sahin M (2005) Separation of spinal cord motor signals using the FastICA method. J Neural Eng 2:90–96

    Article  Google Scholar 

  • Truchetet F, Laligant O (2004) Wavelets in industrial applications: a review. In: Wavelet Application in Industrial Processing II, Proceedings of SPIE, vol 5607, pp 1–14, November, 2004

    Google Scholar 

  • Unser M, Aldroubi A (1996) A review of wavelets in biomedical applications. Proc IEEE 84(4):626–638

    Article  Google Scholar 

  • Vetterli M, Herley C (1992) Wavelets and filter banks: theory and design. IEEE Trans Signal Process 40(9):2207–2232

    Article  MATH  Google Scholar 

  • Vishwanath M, Owens RM, Irwin MJ (1995) VLSI architectures for the discrete wavelet transform. IEEE Trans Circ Syst II Analog Digital Signal Process 42(5):305–316

    Article  MATH  Google Scholar 

  • Volder JE (1959) The CORDIC trigonometric computing technique. IRE Trans Electron Comput EC-8:330–334

    Article  Google Scholar 

  • Walker JS (1997) Fourier analysis and wavelet analysis. Notice AMS 44(6):658–670

    MATH  Google Scholar 

  • Walther JS (1971) A unified algorithm for elementary functions. In: Spring joint computer conference, pp 379–385

    Google Scholar 

  • Weste NHE, Harris D (2005) CMOS VLSI design: a circuits and systems perspective, chap-1, 3rd international edition. Pearson-Addison Wesley. http://www.mypearsonstore.com/bookstore/cmos-vlsi-design-a-circuits-and-systems-perspective-9780321547743?xid=PSED

  • Yu C, Hsieh CA, Chen SJ (1997) Design and implementation of a highly efficient VLSI architecture for discrete wavelet transform. In: IEEE Custom Integrated Circuit Conference, pp 237–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Acharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acharyya, A. (2014). Signal Processing Architecture Implementation Methodologies for Next-Generation Remote Healthcare Systems. In: Maharatna, K., Bonfiglio, S. (eds) Systems Design for Remote Healthcare. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8842-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8842-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8841-5

  • Online ISBN: 978-1-4614-8842-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics