Skip to main content

Vital Sign Sensing Technology

  • Chapter
  • First Online:
Systems Design for Remote Healthcare

Abstract

The four physiological measures of body temperature, pulse rate, respiration rate and blood pressure have for a long time been considered as vital signs in the diagnosis of a patient’s health. It is also widely accepted that the routine measurement of other physiological or biological signals, possibly pathology specific, would help considerably in diagnosis and early stage treatment. Such measurements might include, for example, heart activity, brain activity, blood glucose level or mobility. Furthermore, the development of portable systems that can make a number of different health related measurements would prove beneficial in the monitoring of patients during treatment, recovery or rehabilitation. Technologies and instruments that can make these measurements have existed for some time, but factors such as their cost, lack of portability and in some instances, a requirement for expert knowledge, have restricted their wide scale use. Today, however, advances in information technology, communications and microfabrication techniques have made possible the realisation of truly portable systems for the measurement of a wide range of physiological signs at any medical intervention. This chapter describes the sensing technologies and systems currently being developed, or that are in use, for the measurement of a new, larger range of vital signs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott. Abbott diabetes care—FreeStyle navigator. http://www.abbottdiabetescare.co.uk/your-products/freestyle-navigator. Accessed 25 March 2013

  • Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377(9766):658–666

    Google Scholar 

  • Activ8. http://www.vitamove.nl/products/activ8/. Accessed 25 March 2013

  • Alive Heart. http://www.alivetec.com/products.htm. Accessed 23 March 2013

  • AliveCor Heart Monitor. http://www.alivecor.com/. Accessed 5 July 2013

  • Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28:R1–R39

    Google Scholar 

  • American College of Obstetricians and Gynecologists (2006) Menstruation in girls and adolescents: using the menstrual cycle as a vital sign. ACOG Committee Opinion No. 349. Obstet Gynecol 108(5):1323–1328

    Google Scholar 

  • AN3182 Application Note (2010) Tilt measurement using a low-g 3-axis accelerometer. Rev 1. STMicroelectronics. http://www.st.com/web/en/resource/technical/document/application_note/CD00268887.pdf. Accessed 4 July 2013

  • Anliker U, Ward JA, Lukowicz P et al (2004) Amon: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed 8(4):415–427

    Google Scholar 

  • Armstrong S (2007) Wireless connectivity for health and sports monitoring: a review. Brit J Sports Med 41:285–289

    Google Scholar 

  • Asada H (2009) Wearable blood pressure sensor offers 24/7 continuous monitoring. MIT Tech Talk 53(21):4

    Google Scholar 

  • Asada HH, Shaltis P, Reisner A et al (2003) Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng Med Biomag 22(3):28–40

    Google Scholar 

  • Astra 300 spirometer. http://sdidiagnostics.com/spirometers/astra300.php. Accessed 6 July 2013

  • Avivo mobile patient management system. http://www.corventis.com/US/avivo.asp. Accessed 6 July 2013

  • Bamberg SJM, Benhasat AY, Scarborough DM et al (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 12(4):413–423

    Google Scholar 

  • Basis B1. http://www.mybasis.com/. Accessed 23 March 2013

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195

    Google Scholar 

  • Berntsen S, Hageberg R, Aandstad A et al (2010) Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med 44(9):657–664

    Google Scholar 

  • Bierman AS (2001) Functional status: the sixth vital sign. J Gen Intern Med 16(11):785–786

    Google Scholar 

  • BioHarness. http://www.zephyranywhere.com/products/bioharness-3/. Accessed 1 July 2012

  • Bio-Medical Instruments, Inc. Galvanic skin response sensors. http://bio-medical.com/products/sensors/gsr-sensors.html. Accessed 28 March 2013

  • Bogue R (2007) MEMS sensors: past, present and future. Sens Rev 27(1):7–13

    Google Scholar 

  • Bonato P (2005) Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil 2:2–5

    Google Scholar 

  • Bultz BD, Carlson LE (2005) Emotional distress: the sixth vital sign in cancer care. J Clin Oncol 23(26):6440–6441

    Google Scholar 

  • C8 MediSensors Optical Glucose Monitor System. http://www.c8medisensors.com. Accessed 25 March 2013

  • Cardiomems. http://www.cardiomems.com/content.asp?display=aboutus&view=about%20us%20revised. Accessed 6 July 2013

  • Casson AJ, Smith S, Duncan JS et al (2008) Wearable EEG: what is it, why is it needed and what does it entail? In: Proceedings of the 30th annual international IEEE EMBS conference, Vancouver, BC, 20–24Aug 2008

    Google Scholar 

  • Chan M, Estève D, Fourniols JY et al (2012) Smart wearable systems: current status and future challenges. Artif Intell Med 56(3):137–156

    Google Scholar 

  • Chang JR, Tai CC (2005) A new wireless-type physiological signal measuring system using a PDA and the Bluetooth technology. Biomed Eng Appl Basis Comm 17:229–235

    Google Scholar 

  • Chen W, Wei D, Zhu X et al (2005) A mobile phone-based wearable vital signs monitoring system. In: Proceedings of the fifth international conference on computer and information technology, Shanghai, China, 21–23 Sept 2005

    Google Scholar 

  • Chen L, Reisner AT, Gribok A (2009) Can we improve the clinical utility of respiratory rate as a monitored vital sign? Shock 31(6):575–581

    Google Scholar 

  • Chi YM, Jung TP, Cauwenberghs G (2010) Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng 3:106–119

    Google Scholar 

  • Chung WY, Lee SC, Toh SH (2008) WSN based mobile u-healthcare system with ECG, blood pressure measurement function. In: Proceedings of the 30th annual international conference of the IEEE EMBS, Vancouver, BC, 20–24 Aug 2008

    Google Scholar 

  • Coleman KJ, Ngor E, Reynolds K et al (2012) Initial validation of an exercise “vital sign” in electronic medical records. Med Sci Sports Exerc 44(11):2071–2076

    Google Scholar 

  • Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):1–33

    Google Scholar 

  • Corrventis. NUVANT Mobile Cardiac Telemetry (MCT) System. http://www.corventis.com/us/nuvant.asp. Accessed 25 Mar 2013

  • Coyle S, Lau KT, Moyna N et al (2010) BIOTEX—biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370

    Google Scholar 

  • Curone D, Secco EL, Tognetti A et al (2010) Smart garments for emergency operators: the Proetex project. IEEE Trans Inf Technol Biomed 14(3):694–701

    Google Scholar 

  • Darter BJ, Janz KF, Puthoff ML et al (2006) Reliability and accuracy of the AMP 331 for activity monitoring and energy expenditure prediction in young adults. J Phys Act Health 3(3):277–291

    Google Scholar 

  • Davis MP, Walsh D (2004) Cancer pain: how to measure the fifth vital sign. Cleve Clin J Med 71(8):625–632

    Google Scholar 

  • Derchak PA (2011) The LifeShirt preclinical system is a significant advance towards answering the call of the 3Rs. National Centre for the Replacement, Refinement, and Reduction of Animals in Research:1–9

    Google Scholar 

  • Dexcom. Dexcom G4 Platinum. http://www.dexcom.com/dexcom-g4-platinum. Accessed 25 March 2013

  • Di Rienzo M, Meriggi P, Rizzo F et al (2010) Textile technology for the vital signs monitoring in telemedicine and extreme environments. IEEE Trans Inf Technol Biomed 14(3):711–717

    Google Scholar 

  • English LB (2012) In pursuit of an ideal—a perspective on non-invasive continuous glucose monitoring. Eur Endocrinol 8(1):18–21

    Google Scholar 

  • Ermes M, Parkka J, Mantyjarvi J et al (2008) Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans Inf Technol Biomed 12(1):20–26

    Google Scholar 

  • Exmovere. The Empath Watch. http://www.exmovere.com/pdf/Exmovere_Wearable_Sensor_Research.pdf. Accessed 25 March 2013

  • Fernandez E, Solar H, de No J et al (2012) A 150nW CMOS novel temperature sensor for remote patient monitoring based on an auto-resonant active inductor architecture. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS 2012), Seoul, Korea, 20–23 May 2012

    Google Scholar 

  • Ferrante do Amaral CE, Wolf B (2008) Current development in non-invasive glucose monitoring. Med Eng Phys 30(5):541–549

    Google Scholar 

  • Fiorini P, Doms I, Van Hoof C et al (2008) Micropower energy scavenging. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC 2008), Edinburgh, Scotland, 15–19 Sept 2008

    Google Scholar 

  • Fischell DR, Fischell TA, Harwood J et al (2007) Implantable device for vital signs monitoring. US Patent 2007/0016089 A1, 18 Jan 2007

    Google Scholar 

  • Fletcher RR, Dobson K, Goodwin MS et al (2010) iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomous activity. IEEE Trans Inf Technol Biomed 14(2):215–223

    Google Scholar 

  • Foerster F, Smeja M, Fahrenberg J (1999) Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Human Behav 15:571–583

    MATH  Google Scholar 

  • Freed A, Chan ADC, Lemaire ED et al (2011) Wearable EMG analysis for rehabilitation (WEAR)—surface electromyography in clinical gait analysis. In: Proceedings of IEEE international workshop on medical measurements and applications (MeMeA), Bary, Italy, 20–31 May 2011

    Google Scholar 

  • Fulk GD, Sazonov E (2011) Using sensors to measure activity in people with stroke. Top Stroke Rehabil 18(6):746–757

    Google Scholar 

  • Gao T, Greenspan D, Welsh M et al (2005) Vital signs monitoring and patient tracking over a wireless network. In Proceedings of the 27th annual international conference of the IEEE EMBS, Shanghai, 1–4 Sept 2005

    Google Scholar 

  • Ghasemzadeh H, Jafari R, Prabhakaran B (2010) A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. IEEE Trans Inf Technol Biomed 14(2):198–206

    Google Scholar 

  • Giansanti D, Macellari V, Maccioni G et al (2003) Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Trans Biomed Eng 50(4):476–483

    Google Scholar 

  • Girardin CM, Huot C, Gonthier M et al (2009) Continuous glucose monitoring: a review of biochemical perspectives and clinical use in type 1 diabetes. Clin Biochem 42(3):136–142

    Google Scholar 

  • Greenwood JL, Joy EA, Stanford JB (2010) The physical activity vital sign: a primary care tool to guide counselling for obesity. J Phys Act Health 7(5):571–576

    Google Scholar 

  • Groff CP, Mulvaney PL (2000) Wearable vital sign monitoring system. US Patent 6,102,856, 15 Aug 2000

    Google Scholar 

  • GT1M. http://www.actigraphcorp.com/support/devices/gt1m/. Accessed 24 March 2013

  • Haahr RG, Duun S, Thomsen EV (2008) A wearable “electronic patch” for wireless continuous monitoring of chronically diseased patients. In: Proceedings of the fifth international workshop on wearable and implantable body sensor networks, Hong Kong, China, 1–3 June 2008

    Google Scholar 

  • HealthHub. http://www.healthhub.com/info/what_is_HealthHub/Default.aspx. Accessed 5 July 2013

  • Heimann K, Steffen M, Bernstein N et al (2009) Noncontact monitoring of heart and lung activity using magnetic induction measurement in a neonatal animal model. Biomed Tech 54(6):337–345

    Google Scholar 

  • Hogrel J-Y (2005) Clinical applications of surface electromyography in neuromuscular disorders. Neurophysiol Clin 35:59–71

    Google Scholar 

  • Hung K, Zhang YT, Tai B (2004) Wearable medical devices for tele-home healthcare. In: Proceedings of the 26th annual international conference of the IEEE EMBS, San Francisco, CA, 1–5 Sept 2004

    Google Scholar 

  • Hunter Peckham P, Knutson JK (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Google Scholar 

  • Hyde RA, Ketteringham LP, Neild SA et al (2008) Estimation of upper-limb orientation based on accelerometer and gyroscope measurements. IEEE Trans Biomed Eng 55(2):746–754

    Google Scholar 

  • Ichimori S, Nishida K, Shimoda S et al (2006) Development of a highly responsive needle-type glucose sensor using polyimide for a wearable artificial endocrine pancreas. J Artif Organs 9(2):105–113

    Google Scholar 

  • IDEEA. http://www.minisun.com/. Accessed 24 March 2013

  • Izzetoglu M, Izzetoglu K, Bunce S et al (2005) Functional near-infrared neuroimaging. IEEE Trans Neural Syst Rehabil Eng 13(2):153–159

    Google Scholar 

  • Jayaraman S (2005) Fabric-based sensor for monitoring vital signs. US Patent 6,970,731, 29 Nov 2005

    Google Scholar 

  • Jiang M, Shang H, Wang Z et al (2011) A method to deal with installation errors of wearable accelerometers for human activity recognition. Physiol Meas 32:347–358

    Google Scholar 

  • Johnstone JA, Ford PA, Hughes G et al (2012) Bioharness multivariable monitoring device. Part I: validity. J Sports Sci Med 11:409–417

    Google Scholar 

  • Joseph A (2003) Continence: the sixth vital sign? Let’s not ignore urinary incontinence. Am J Nurs 103(7):11

    Google Scholar 

  • Jovanov E, Milenković A (2011) Body area networks for ubiquitous healthcare applications: opportunities and challenges. J Med Syst 35:1245–1254

    Google Scholar 

  • Jovanov E, Milenković A, Otto C et al (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J Neuroeng Rehabil 2:6–15

    Google Scholar 

  • Kendell C, Lemaire ED (2009) Effect of mobility devices on orientation sensors that contain magnetometers. J Rehabil R D 46(7):957–962

    Google Scholar 

  • Lee D-S, Lee Y-D, Chung W-Y et al (2006) Vital sign monitoring system with life emergency event detection using wireless sensor network. In: Proceedings of the IEEE fifth sensors conference, Daegu, Korea, 22–25 Oct 2006

    Google Scholar 

  • Lee GX, Low KS, Taher T (2010) Unrestrained measurement of arm motion based on a wearable wireless sensor network. IEEE Trans Instrum Meas 59(5):1309–1317

    Google Scholar 

  • Leonov V (2011) Energy harvesting for self-powered wearable devices. In: Bonfiglio A, De Rossi D (eds) Wearable monitoring systems. Springer, New York, pp 27–49

    Google Scholar 

  • Lewis AP, Cranny A, Harris NR et al (2013) Review on the development of truly portable and in-situ capillary electrophoresis systems. Meas Sci Technol. doi:10.1088/0957-0233/24/4/042001

    Google Scholar 

  • LifeMonitor. http://vivonoetics.com/products/sensors/equivital/. Accessed 5 July 2013

  • Lifewatch. PMP4 Wireless Healthcare System. http://www.lifewatch.com/wirelesshealthcare. Accessed 25 March 2013

  • Lin Y-H, Jan I-C, Ko PC-I et al (2004) A wireless PDA-based physiological monitoring system for patient transport. IEEE Trans Inf Technol Biomed 8(4):439–447

    Google Scholar 

  • Loew N, Winzer KJ, Becher G et al (2007) Medical sensors of the BASUMA body sensor network. In: Proceedings of the fourth international workshop on wearable and implantable body sensor networks, Aachen, Germany, 26–28 March 2007

    Google Scholar 

  • Lorincz K, Malan DJ, Fulford-Jones TRF et al (2004) Sensor networks for emergency response: challenges and opportunities. Pervasive Comput 3(4):16–23

    Google Scholar 

  • Lötters JC, Schipper J, Veltink PH et al (1998) Procedure for in-use calibration of triaxial accelerometers in medical applications. Sens Actuators A 68:221–228

    Google Scholar 

  • Luinge HJ, Veltink PH (2004) Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans Neural Syst Rehabil Eng 12(1):112–121

    Google Scholar 

  • Luinge HJ, Veltink PH (2005) Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med Biol Eng Comput 43:273–282

    Google Scholar 

  • Lukowicz P, Anliker U, Ward J et al (2002) AMON: a wearable medical computer for high risk patients. In: Proceedings of the IEEE sixth international symposium on wearable computers, Seattle, WA, 7–10 Oct 2002

    Google Scholar 

  • Luprano J (2006) European projects on smart fabrics, interactive textiles: sharing opportunities and challenges. In: Proceedings of workshop on wearable technology and intelligent textiles, Helsinki, Finland, 22 Nov 2006

    Google Scholar 

  • Lymberis A, Paradiso R (2008) Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In: Proceedings of the IEEE international conference on engineering in medicine and biology society (EMBS 2008), Vancouver, BC, 20–24 Aug 2008

    Google Scholar 

  • Lynch M (2001) Pain as the fifth vital sign. J Intraven Nurs 24(2):85–94

    Google Scholar 

  • Maharatna K, Mazomenos EB, Morgan J et al (2012) Towards the development of next-generation remote healthcare system: Some practical considerations. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), Seoul, Korea

    Google Scholar 

  • Mamagoose paediatric pyjamas. http://www.esa.int/esaKIDSen/SEML8LXJD1E_Technology_1.html. Accessed 5 July 2013

  • Mamagoose paediatric pyjamas. http://www.esa.int/Our_Activities/Technology/TTP2/New_pyjamas_could_prevent_cot_deaths. Accessed 5 July 2013

  • Marx AJ (1976) Patient vital-signs automated measuring apparatus. US Patent 3,996,928, 14 Dec 1976

    Google Scholar 

  • Mathie MJ, Coster ACF, Lovell NH et al (2004) Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas 25:R1–R20

    Google Scholar 

  • Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35:537–542

    Google Scholar 

  • Medical International Research MirOXI digital multimeter. http://www.mir.abmedic.com/miroxi.htm. Accessed 25 March 2013

  • Medron Inc. Medron automatic blood pressure monitor. http://www.medroninc.com. Accessed 25 March 2013

  • Medtronic. About Pacemakers. http://www.medtronic.com/patients/bradycardia/device/index.htm. Accessed 25 March 2013

  • Medtronic. http://www.medtronic.co.uk/index.htm. Accessed 6 July 2013

  • Medtronic. MiniMed Paradigm Real-Time Revel System. http://www.medtronicdiabetes.com/products/paradigmrevelsystem. Accessed 25 March 2013

  • Meystre S (2005) The current state of telemonitoring: a comment on the literature. Telemed J E Health 11(1):63–69

    Google Scholar 

  • Ming-Zher P, Swenson NC, Picard RW (2010) A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans Biomed Eng 57(5):1243–1252

    Google Scholar 

  • Money EW, Caldwell R, Sciarra M (1999) Vital sign remote monitoring device. US Patent 5,919,141, 6 July 1999

    Google Scholar 

  • Mower WR, Sachs C, Nicklin EL et al (1997) Pulse oximetry as a fifth pediatric vital sign. Pediatrics 99:681–686

    Google Scholar 

  • Mower WR, Myers G, Nicklin EL et al (1998) Pulse oximetry as a fifth vital sign in emergency geriatric assessment. Acad Emerg Med 5(9):858–865

    Google Scholar 

  • Mularski RA, White-Chu F, Overbay D et al (2006) Measuring pain as the 5th vital sign does not improve quality of pain management. J Gen Intern Med 21(6):607–612

    Google Scholar 

  • Mundt CW, Montgomery KN, Udoh UE et al (2005) A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans Inf Technol Biomed 9(3):382–391

    Google Scholar 

  • MyBeat. http://www.lifespanfitness.com/products_heartratering.asp. Accessed 23 March 2013

  • MyHeart. http://www.hitech-projects.com/euprojects/myheart/. Accessed 23 March 2013

  • Najafi B, Aminian K, Paraschiv-Ionescu A et al (2003) Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 50(6):711–723

    Google Scholar 

  • Nangalia V, Prytherch DR, Smith GB (2010) Health technology assessment review: remote monitoring of vital signs—current status and future challenges. Crit Care 14:233–240

    Google Scholar 

  • Neff TA (1988) Routine oximetry: a fifth vital sign? Chest 94(2):227

    Google Scholar 

  • Nishida Y, Kawakami G, Mizoguchi H (2006) Everyday grasping behavior measurement with wearable electromyography. In Proceedings of the fifth IEEE conference on sensors, Daegu, Korea, 22–25 Oct 2006

    Google Scholar 

  • O’Donovan KJ, Kamnik R, O’Keeffe DT et al (2007) An inertial and magnetic sensor based technique for joint angle measurement. J Biomech 40:2604–2611

    Google Scholar 

  • OECD (2011) Health at a glance 2011: OECD indicators. OECD Publishing. http://dx.doi.org/10.1787/health_glance-2011-en. Accessed 1 July 2013

  • Otto C, Milenković A, Sanders C et al (2006) System architecture of a wireless body area sensor network for ubiquitous health monitoring. J Mob Multimed 1(4):307–326

    Google Scholar 

  • Pandian PS, Mohanavelu K, Safeer KP et al (2008) Smart Vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys 30(4):466–477

    Google Scholar 

  • Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern C 40(1):1–12

    Google Scholar 

  • Paradiso R (2003) Wearable health care system for vital signs. In: Proceedings of the fourth annual IEEE conference on information technology applications in biomedicine, Birmingham, UK, 24–26 April 2003

    Google Scholar 

  • Paradiso R, Loriga G, Taccini N et al (2005a) WEALTHY—a wearable healthcare system: new frontier on e-textile. J Telecomm InfTechnol 4:105–113

    Google Scholar 

  • Paradiso R, Loriga G, Taccini N (2005b) A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed 9(3):337–344

    Google Scholar 

  • Patel S, Hughes R, Hester T et al (2010) A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc IEEE 98(3):450–461

    Google Scholar 

  • Patel S, Park H, Bonato P et al (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9:21–32

    Google Scholar 

  • Peters JL (1983) Vital signs monitoring apparatus. US Patent 4,383,534, 17 May 1983

    Google Scholar 

  • Pfohl RL (1991) Vital signs monitoring and communication system. US Patent 4,981,139, 1 Jan 1991

    Google Scholar 

  • Poon CCY, Liu Q, Gao H et al (2011) Wearable intelligent systems for E-health. J Comput Sci Eng 5(3):246–256

    Google Scholar 

  • Prance H (2011) Sensor developments for electrophysiological monitoring in healthcare. In: Gargiulo GD, McEwan A (eds) Applied biomedical engineering, InTech, Croatia, pp 265–286

    Google Scholar 

  • Preventice. BodyGuardian Remote Monitoring System. http://www.preventice.com/products/bodyguardian. Accessed 25 March 2013

  • Procomp Infiniti system sensors. http://www.thoughttechnology.com/sensorsnew.htm. Accessed 6 July 2013

  • Procomp Infiniti system wireless adapater. http://www.thoughttechnology.com/teleinfinit.htm. Accessed 6 July 2013

  • ProComp Infiniti system. http://www.thoughttechnology.com/proinf.htm. Accessed 6 July 2013

  • Pross G, Schlueter M (1994) Method and system for monitoring vital signs. US Patent 5,343,869, 6 Sept 1994

    Google Scholar 

  • Ragnarsson KT, Pollack S, O’Daniel W Jr et al (1998) Clinical evaluation of computerized functional electrical stimulation after spinal cord injury: a multicenter pilot study. Arch Phys Med Rehabil 69(9):672–677

    Google Scholar 

  • Rendell M, Saiprasad S, Trepp-Carrasco A et al (2013) The future of inpatient diabetes management: glucose as the sixth vital sign. Expert Rev Endocrinol Metab 8(2):195–205

    Google Scholar 

  • Richards Grayson AC, Scheidt Shawgo R, Li Y, Cima MJ (2004) Electronics MEMS for triggered delivery. Advanced Drug Delivery Reviews 56(2):173–184

    Google Scholar 

  • Roggen D, Magnenat S, Waibel M et al (2011) Wearable computing. IEEE Robot Autom Mag 18:83–95

    Google Scholar 

  • Rovira C, Coyle S, Corcoran B et al (2011) Integration of textile-based sensors and Shimmer for breathing rate and volume measurement. In: Proceedings of the IEEE fifth international conference on pervasive computing technologies for healthcare, Dublin, Ireland, 23–26 May 2011

    Google Scholar 

  • Rushton DN (1997) Functional electrical stimulation. Physiol Meas 18:241–275

    Google Scholar 

  • Saltzstein WE, Sabri M, Dobaj AP et al (1999) Medical patient vital signs monitoring apparatus. US Patent 5,931,791, 3 Aug 1999

    Google Scholar 

  • Salvo P, Di Francesco F, Costanzo D et al (2010) A wearable sensor for measuring sweat rate. IEEE Sens 10(10):1557–1558

    Google Scholar 

  • Saywell N, Vandal AC, Brown P et al (2012) Telerehabilitation to improve outcomes for people with stroke: study protocol for a randomised controlled trial. Trials 13:233–243

    Google Scholar 

  • Schlegelmilch RM, Kramme R (2012) Pulmonary function testing. In: Kramme R, Hoffmann KP, Pozos RS (eds) Handbook of medical technology. Springer, Berlin

    Google Scholar 

  • Scilingo EP, Gemignani A, Paradiso R et al (2005) Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Trans Inf Technol Biomed 9(3):345–352

    Google Scholar 

  • SenseWear. http://sensewear.bodymedia.com/. Accessed 1 July 2013

  • Sensixa e-AR with SpO2. http://www.sensixa.com. Accessed 25 March 2013

  • Shimmer Wearable Wireless Sensor Platform. http://www.shimmer-research.com/r-d. Accessed 25 March 2013

  • Simel DL (2011) Approach to the patient: history and physical examination. In: Goldman L, Schafer AI (eds) Goldman’s cecil medicine, 24th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Smith JP (2005) Medical and biological sensors: a technical and commercial review. Sens Rev 25(4):241–245

    Google Scholar 

  • Smith AD, Crabtree DR, Bilzon JL et al (2010) The validity of wireless iButtons and thermistors for human skin temperature measurement. Physiol Meas 31(1):95–114

    Google Scholar 

  • Solar H, Fernández E, Tartarisco G et al (2013) A non invasive, wearable sensor platform for multi-parametric remote monitoring in CHF patients. Health Technol 3(2):99–109

    Google Scholar 

  • Sotera ViSi Mobile. http://www.visimobile.com. Accessed 5 July 2013

  • Spirobank II. http://www.spirometry.com/ENG/Products/spirobank2.asp. Accessed 6 July 2013

  • Stabil-O-Graph. http://www.iem.de/stabil_o_graph_mobil2?_lang=1. Accessed 6 July 2013

  • StayHealthy. http://www.stayhealthy.com/en_us/main/. Accessed 24 March 2013

  • Steffen DA, Sturm RE, Rinard GA (1981) Vital signs monitoring system. US Patent 4,270,547, 2 June 1981

    Google Scholar 

  • Stegeman DF, Blok JH, Hermens HJ et al (2000) Surface EMG models: properties and applications. J Electromyogr Kinesiol 10:313–326

    Google Scholar 

  • Studenski S, Perera S, Wallace D et al (2003) Physical performance measures in the clinical setting. J Am Geriatr Soc 51(3):314–322

    Google Scholar 

  • Sund-Levander M, Forsberg C, Wahren LK (2002) Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scand J Caring Sci 16(2):122–128

    Google Scholar 

  • Sund-Levander M, Grodzinsky E, Loyd D et al (2004) Errors in body temperature assessment related to individual variation, measuring technique and equipment. Int J Nurs Pract 10(5):216–223

    Google Scholar 

  • Sung M, Marci C, Pentland A (2005) Wearable feedback systems for rehabilitation. J Neuroeng Rehabil 2:17–28

    Google Scholar 

  • Suunto heart rate monitors. http://www.suunto.com/en-GB/sports-watch-collections/Suunto-M-Series-Collection/. Accessed 6 July 2013

  • Suzuki S, Matsui T, Kawahara H et al (2009) A non-contact vital sign monitoring system for ambulances using dual-frequency microwave radars. Med Biol Eng Comput 47:101–105

    Google Scholar 

  • Taccini N, Loriga G, Pacelli M et al (2008) Wearable monitoring system for chronic cardio-respiratory diseases. In: Proceedings of the IEEE international conference on engineering in medicine and biology society (EMBS 2008), Vancouver, BC, 20–24 Aug 2008

    Google Scholar 

  • Tierney LM, Whooley MA, Saint S (1997) Oxygen saturation: a fifth vital sign? West J Med 166(4):285–286

    Google Scholar 

  • Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21:87–94

    Google Scholar 

  • Tura A, Badanai M, Longo D et al (2003) A medical wearable device with wireless Bluetooth-based data transmission. Meas Sci Rev 3:1–4

    Google Scholar 

  • van Halteren A, Bults R, Wac K et al (2004) Mobile patient monitoring: the MobiHealth system. J Inf Technol Healthcare 2(5):365–373

    Google Scholar 

  • Vardi A, Levin I, Paret G et al (2000) The sixth vital sign: end-tidal CO2 in pediatric trauma patients during transport. Harefuah 139(3–4):85–87

    Google Scholar 

  • Varshney U (2007) Pervasive healthcare and wireless health monitoring. Mob Netw Appl 12(2–3):113–127

    Google Scholar 

  • Veltink PH, Bussmann HBJ, de Vries W et al (1996) Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng 4(4):375–385

    Google Scholar 

  • Vuorela T, Seppä VP, Vanhala J (2010) Design and implementation of a portable long-term physiological signal recorder. IEEE Trans Inf Technol Biomed 14(3):718–725

    Google Scholar 

  • Watkins N, Irimia D, Toner M et al (2011) On a chip. IEEE Pulse 2(6):19–27

    Google Scholar 

  • Wilson JF (2005) Is sleep the new vital sign? Ann Intern Med 142(10):877–880

    Google Scholar 

  • Withings. Withings blood pressure monitor. http://www.withings.com/en/bloodpressuremonitor. Accessed March 2013

  • Wolf B, Herzog K (2013) Electronics for better healthcare. Eur J Prev Cardiol 20(2):2–7

    Google Scholar 

  • World Health Organization (2013) World health statistics. WHO, Geneva. ISBN 978-92-4-156458-8

    Google Scholar 

  • Yun X, Bachmann ER (2006) Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans Robot 22(6):1216–1227

    Google Scholar 

  • Zhang Y, Hu H, Zhou H (2005) Study on adaptive Kalman filtering algorithms in human movement tracking. In: Proceedings of the IEEE international conference on information acquisition, Hong Kong and Macau, China, 27 June–3 July 2005

    Google Scholar 

  • Zhou H, Stone T, Hu H et al (2008) Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys 30:123–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Cranny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cranny, A., Beriain, A., Solar, H., Tartarisco, G., Pioggia, G. (2014). Vital Sign Sensing Technology. In: Maharatna, K., Bonfiglio, S. (eds) Systems Design for Remote Healthcare. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8842-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8842-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8841-5

  • Online ISBN: 978-1-4614-8842-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics