Skip to main content

Scattering by Orthotropic Media

  • Chapter
  • First Online:
  • 2253 Accesses

Part of the book series: Applied Mathematical Sciences ((AMS,volume 188))

Abstract

Until now the reader has been introduced only to the scattering of time-harmonic electromagnetic waves by an imperfect conductor. We will now consider the scattering of electromagnetic waves by a penetrable orthotropic inhomogeneity embedded in a homogeneous background. As in the previous chapter, we will confine ourselves to the scalar case that corresponds to the scattering of electromagnetic waves by an orthotropic infinite cylinder. The direct scattering problem is now modeled by a transmission problem for the Helmholtz equation outside the scatterer and an equation with nonconstant coefficients inside the scatterer. This chapter is devoted to the analysis of the solution to the direct problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aktosun T, Gintides D, Papanicolaou V (2011) The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 27:115004.

    MathSciNet  Google Scholar 

  2. Aktosun T, Papanicolaou V (2013) Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 29:065007.

    MathSciNet  Google Scholar 

  3. Angell T, Kirsch A (1992) The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52:1597–1610.

    MathSciNet  MATH  Google Scholar 

  4. Angell T, Kirsch A (2004) Optimization Methods in Electromagnetic Radiation. Springer, New York.

    MATH  Google Scholar 

  5. Arens T (2001) Linear sampling methods for 2D inverse elastic wave scattering. Inverse Problems 17:1445–1464.

    MathSciNet  MATH  Google Scholar 

  6. Arens T (2004) Why linear sampling works. Inverse Problems 20:163–173.

    MathSciNet  MATH  Google Scholar 

  7. Arens T, Lechleiter A(2009) The linear sampling method revisited. J. Integral Equations Appl. 21:179–203.

    MathSciNet  MATH  Google Scholar 

  8. Boas Jr, Ralph P (1954) Entire Functions. Academic, New York.

    Google Scholar 

  9. Bonnet-BenDhia AS, Chesnel L, Haddar H (2011) On the use of t-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci., Ser. I 340:647–651.

    MathSciNet  Google Scholar 

  10. Bonnet-BenDhia AS, Ciarlet P, Maria Zwölf C (2010) Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math 234:1912–1919.

    MathSciNet  Google Scholar 

  11. Bressan A (2013) Lecture Notes on Functional Analysis with Applications to Linear Partial Differential Equations. American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  12. Buchanan JL, Gilbert RP, Wirgin A, Xu Y (2004) Marine Acoustics. Direct and Inverse Problems. SIAM, Philadelphia.

    MATH  Google Scholar 

  13. Cakoni F, Colton D (2003) A uniqueness theorem for an inverse electomagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinb. Math. Soc. 46:293–314.

    MathSciNet  MATH  Google Scholar 

  14. Cakoni F, Colton D (2003) On the mathematical basis of the linear sampling method. Georgian Math. J. 10/3:411–425.

    Google Scholar 

  15. Cakoni F, Colton D (2003) The linear sampling method for cracks. Inverse Problems 19:279–295.

    MathSciNet  MATH  Google Scholar 

  16. Cakoni F, Colton D (2003) Combined far field operators in electromagnetic inverse scattering theory. Math. Methods Appl. Sci. 26:413–429.

    MathSciNet  MATH  Google Scholar 

  17. Cakoni F, Colton D (2004) The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64:709–723.

    MathSciNet  MATH  Google Scholar 

  18. Cakoni F, Colton D (2005) Open problems in the qualitative approach to inverse electromagnetic scattering theory. Eur. J. Appl. Math. to appear.

    Google Scholar 

  19. Cakoni F, Colton D, Gintides D (2010) The interior transmission eigenvalue problem. SIAM J. Math. Anal. 42:2912–2921.

    MathSciNet  MATH  Google Scholar 

  20. Cakoni F, Colton D, Haddar H (2002) The linear sampling method for anisotropic media. J. Comp. Appl. Math. 146:285–299.

    MathSciNet  MATH  Google Scholar 

  21. Cakoni F, Colton D, Haddar H (2009) The computation of lower bounds for the norm of the index of refraction in an anisotropic media. J. Integral Equations Appl. 21(2):203–227.

    MathSciNet  MATH  Google Scholar 

  22. Cakoni F, Colton D, Haddar H (2010) On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser I 348(7–8):379–383.

    MathSciNet  MATH  Google Scholar 

  23. Cakoni F, Colton D, Monk P (2001) The direct and inverse scattering problems for partially coated obstacles. Inverse Problems 17:1997–2015.

    MathSciNet  MATH  Google Scholar 

  24. Cakoni F, Colton D, Monk P (2004) The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. 134A:661–682.

    MathSciNet  Google Scholar 

  25. Cakoni F, Colton D, Monk P (2010) The determination of boundary coefficients from far field measurements. J. Int. Equations Appl. 42(2):167–191.

    MathSciNet  Google Scholar 

  26. Cakoni F, Colton D, Monk P (2011) The Linear Sampling Method in Inverse Electromagnetic Scattering. CBMS-NSF Regional Conference Series in Applied Mathematics 80, SIAM, Philadelphia.

    Google Scholar 

  27. Cakoni F, Colton D, Monk P (2005) The determination of the surface conductivity of a partially coated dielectric. SIAM J. Appl. Math. 65:767–789.

    MathSciNet  MATH  Google Scholar 

  28. Cakoni F, Colton D, Monk P, Sun J (2010) The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26:074004.

    MathSciNet  Google Scholar 

  29. Cakoni F, Darrigrand E (2005) The inverse electromagnetic scattering problem for a mixed boundary value problem for screens. J. Comp. Appl. Math. 174:251–269.

    MathSciNet  MATH  Google Scholar 

  30. Cakoni F, Fares M, Haddar H (2006) Anals of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Problems 42:237–255.

    MathSciNet  Google Scholar 

  31. Cakoni F, Gintides D, Haddar H (2010) The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42:237–255.

    MathSciNet  MATH  Google Scholar 

  32. Cakoni F, Haddar H (2013) Transmission eigenvalues in inverse scattering theory Inverse Problems and Applications, Inside Out 60, MSRI Publications, Berkeley, CA.

    Google Scholar 

  33. Cakoni F, Haddar H (2008), On the existence of transmission eigenvalues in an inhomogeneous medium. Applicable Anal. 88(4):475–493.

    MathSciNet  Google Scholar 

  34. Cakoni F, Haddar H (2003) Interior transmission problem for anisotropic media. Mathematical and Numerical Aspects of Wave Propagation (Cohen et al., eds.), Springer, 613–618.

    Google Scholar 

  35. Cakoni F, Kirsch A (2010) On the interior transmission eigenvalue problem (2010) Int. J. Comp. Sci. Math. 3:142–167.

    MathSciNet  MATH  Google Scholar 

  36. Chanillo S, Helffer B, Laptev A (2004) Nonlinear eigenvalues and analytic hypoellipticity. J. Functional Analysis 209:425–443.

    MathSciNet  MATH  Google Scholar 

  37. Charalambopoulos A, Gintides D, Kiriaki K (2002) The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Problems 18:547–558.

    MathSciNet  MATH  Google Scholar 

  38. Charalambopoulos A, Gintides D, Kiriaki K (2003) The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Problems 19:549–561.

    MathSciNet  MATH  Google Scholar 

  39. Chesnel L (2012) Étude de quelques problémes de transmission avec changement de signe. Application aux métamatériaux. Ph.D. thesis. École Doctorale de l’École Polytechnique, France.

    Google Scholar 

  40. Chesnel L (2012) Interior transmission eigenvalue problem for Maxwell’s equations: the T-coercivity as an alternative approach. Inverse Problems 28:065005.

    MathSciNet  Google Scholar 

  41. Cheng J, Yamamoto M (2003) Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19:1361–1384.

    MathSciNet  Google Scholar 

  42. Collino F, Fares M, Haddar H (2003) Numerical and analytical studies of the linear sampling method in electromagnetic inverse scattering problems. Inverse Problems 19:1279–1298.

    MathSciNet  MATH  Google Scholar 

  43. Colton D (2004) Partial Differential Equations: An Introduction. Dover, New York.

    Google Scholar 

  44. Colton D, Coyle J, Monk P (2000) Recent developments in inverse acoustic scattering theory. SIAM Rev. 42:369–414.

    MathSciNet  MATH  Google Scholar 

  45. Colton D (1980) Analytic Theory of Partial Differential Equations. Pitman Advanced Publishing Program, Boston.

    MATH  Google Scholar 

  46. Colton D, Erbe C (1996) Spectral theory of the magnetic far field operator in an orthotropic medium, in Nonlinear Problems in Applied Mathematics, SIAM, Philadelphia.

    Google Scholar 

  47. Colton D, Haddar H (2005) An application of the reciprocity gap functional to inverse scattering theory. Inverse Problems 21:383–398.

    MathSciNet  MATH  Google Scholar 

  48. Colton D, Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24:719–731.

    MathSciNet  MATH  Google Scholar 

  49. Colton D, Haddar H, Piana P (2003) The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems 19:S105–S137.

    MathSciNet  MATH  Google Scholar 

  50. Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12:383–393.

    MathSciNet  MATH  Google Scholar 

  51. Colton D, Kress R (1983) Integral Equation Methods in Scattering Theory. Wiley, New York.

    MATH  Google Scholar 

  52. Colton D, Kress R (1995) Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26:601–615.

    MathSciNet  MATH  Google Scholar 

  53. Colton D, Kress R (1995) Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55:1724–35.

    MathSciNet  MATH  Google Scholar 

  54. Colton D, Kress R (2013) Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York.

    MATH  Google Scholar 

  55. Colton D, Kress R (2001) On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24:1289–1303.

    MathSciNet  MATH  Google Scholar 

  56. Colton D, Leung YJ (2013) Complex eigenvalues and the inverse spectral problem for transmission eigenvalues. Inverse Problems. 29:104008.

    Google Scholar 

  57. Colton D, Kress R, Monk P. (1997) Inverse scattering from an orthotropic medium. J. Comp. Appl. Math. 81:269–298.

    MathSciNet  MATH  Google Scholar 

  58. Colton D, Monk P. (1999) A linear sampling method for the detection of leukemia using microwaves. II. SIAM J. Appl. Math. 69, 241–255.

    Google Scholar 

  59. Colton D, Päivarinta L (1992) The uniqueness of a solution to an inverse scattering problem for electromagnetic wave. Arch. Rational Mech. Anal. 119:59–70.

    MathSciNet  MATH  Google Scholar 

  60. Colton D, Päivärinta L, Sylvester J (2007) The interior transmission problem. Inverse Problems Imag. 1:13–28.

    MATH  Google Scholar 

  61. Colton D, Piana M, Potthast R (1997) A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Problems 13:1477–1493.

    MathSciNet  MATH  Google Scholar 

  62. Colton D, Sleeman BD (1983) Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31:253–59.

    MathSciNet  MATH  Google Scholar 

  63. Colton D, Sleeman BD (2001) An approximation property of importance in inverse scattering theory. Proc. Edinb. Math. Soc. 44:449–454.

    MathSciNet  MATH  Google Scholar 

  64. Costabel M, Dauge M (2002) Crack singularities for general elliptic systems. Math. Nachr. 235:29–49.

    MathSciNet  MATH  Google Scholar 

  65. Costabel M, Dauge M (1996) A singularly perturbed mixed boundary value problem. Comm. Partial Differential Equations 21:1919–1949.

    MathSciNet  MATH  Google Scholar 

  66. Cossonnière A, Haddar H (2011) The electromagnetic interior transmission problem for regions with cavities. SIAM J. Math. Anal. 43:1698–1715.

    MathSciNet  MATH  Google Scholar 

  67. Coyle J (2000) An inverse electromagnetic scattering problem in a two-layered background. Inverse Problems 16:275–292.

    MathSciNet  MATH  Google Scholar 

  68. Engl HW, Hanke M, Neubauer A (1996) Regularization of Inverse Problems. Kluwer, Dordrecht.

    MATH  Google Scholar 

  69. Fredholm I (1903) Sur une classe d’équations fonctionelles. Acta Math. 27:365–390.

    MathSciNet  MATH  Google Scholar 

  70. Friedman A (1969) Partial Differential Equations. Holt, Rinehart and Winston, New York.

    MATH  Google Scholar 

  71. Ghosh Roy DN, Couchman LS (2002) Inverse Problems and Inverse Scattering of Plane Waves. Academic, London.

    Google Scholar 

  72. Gilbarg D, Trudinger NS (1983) Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin.

    MATH  Google Scholar 

  73. Gintides D, Kiriaki K (2001) The far-field equations in linear elasticity – an inversion scheme. Z. Angew. Math. Mech. 81:305–316.

    MathSciNet  MATH  Google Scholar 

  74. Griesmaier R, Hanke M, Sylvester J (to appear) Far field splitting for the Helmholtz equation.

    Google Scholar 

  75. Grinberg NI, Kirsch A (2002) The linear sampling method in inverse obstacle scattering for impedance boundary conditions. J. Inv. Ill-Posed Problems 10:171–185.

    MathSciNet  MATH  Google Scholar 

  76. Grinberg NI, Kirsch A (2004) The factorization method for obstacles with a-priori separated sound-soft and sound-hard parts. Math. Comput. Simulation 66:267–279

    MathSciNet  MATH  Google Scholar 

  77. Gylys-Colwell F (1996) An inverse problem for the Helmholtz equation. Inverse Problems 12:139–156.

    MathSciNet  MATH  Google Scholar 

  78. Haddar H (2004) The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem. Math. Methods Appl. Sci. 27:2111–2129.

    MathSciNet  MATH  Google Scholar 

  79. Haddar H, Joly P (2002)Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comp. Appl. Math. 143:201–236.

    MathSciNet  MATH  Google Scholar 

  80. Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Problems 18:891–906.

    MathSciNet  MATH  Google Scholar 

  81. Hähner P (2000) On the uniqueness of the shape of a penetrable, anisotropic obstacle. J. Comp. Appl. Math. 116:167–180.

    MATH  Google Scholar 

  82. Hähner P (2002) Electromagnetic wave scattering: theory. in Scattering (Pike and Sabatier, eds.) Academic, New York.

    Google Scholar 

  83. Hartman P, Wilcox C (1961) On solutions of the Helmholtz equation in exterior domains. Math. Zeit. 75:228–255.

    MathSciNet  MATH  Google Scholar 

  84. Hitrik M, Krupchyk K, Ola P, Päivärinta L (2010) Transmission eigenvalues for operators with constant coefficients. SIAM J. Math. Anal. 42:2965–2986.

    MathSciNet  MATH  Google Scholar 

  85. Hitrik M, Krupchyk K, Ola P and Päivärinta L (2011) The interior transmission problem and bounds on transmission eigenvalues. Math Res. Lett. 18:279–293.

    MathSciNet  MATH  Google Scholar 

  86. Hitrik M, Krupchyk K, Ola P, Päivärinta L (2011) Transmission eigenvalues for elliptic operators. SIAM J. Math. Anal. 43:2630–2639.

    MathSciNet  MATH  Google Scholar 

  87. Hochstadt H (1973) Integral Equations. Wiley, New York.

    MATH  Google Scholar 

  88. Hooper AE, Hambric HN (1999) Unexploded ordinance (UXO): The problem. Detection and Identification of Visually Obscured Targets (Baum, ed.), Taylor and Francis, Philadelphia.

    Google Scholar 

  89. Hörmander L (1985) The Analysis of Linear Partial Differential Operators III. Springer, Berlin.

    MATH  Google Scholar 

  90. Hsiao G, Wendland WL (2008) Boundary Integral Equations. Springer, Berlin.

    MATH  Google Scholar 

  91. Ikehata M (1998) Reconstruction of the shape of an obstacle from scattering amplitude at a fixed frequency. Inverse Problems 14:949–954.

    MathSciNet  MATH  Google Scholar 

  92. Ikehata M (1999) Reconstructions of obstacle from boundary measurements. Waves Motion 30:205–223.

    MathSciNet  MATH  Google Scholar 

  93. Isakov V (1988) On the uniqueness in the inverse transmission scattering problem. Comm. Partial Differential Equations 15:1565–1587.

    MathSciNet  Google Scholar 

  94. Isakov V (1998) Inverse Problems for Partial Differential Equations. Springer, New York.

    MATH  Google Scholar 

  95. John F (1982) Partial Differential Equations, 4th ed. Springer Verlag, New York.

    MATH  Google Scholar 

  96. Jones DS (1974) Integral equations for the exterior acoustic problem. Q. J. Mech. Appl. Math. 27:129–142.

    MATH  Google Scholar 

  97. Y. Katznelson (9168) An Introduction to Harmonic Analysis. Wiley, New York.

    Google Scholar 

  98. Kirsch A (2011) An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  99. Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14:1489–1512.

    MathSciNet  MATH  Google Scholar 

  100. Kirsch A (1999) Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Problems 15:413–29.

    MathSciNet  MATH  Google Scholar 

  101. Kirsch A (2002) The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Problems 18:1025–1040.

    MathSciNet  MATH  Google Scholar 

  102. Kirsch A (2004) The factorization method for Maxwell’s equations. Inverse Problems 20:S117-S134.

    MathSciNet  MATH  Google Scholar 

  103. Kirsch A (2005) The factorization method for a class of inverse elliptic problems. Math. Nachr. 278:258–277.

    MathSciNet  MATH  Google Scholar 

  104. Kirsch A (2008) An integral equation for the scattering problem for an anisotropic medium and the factorization method. Advanced Topics in Scattering and Biomedical Engineering, Proceedings of the 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific, New Jersey.

    Google Scholar 

  105. Kirsch A (2009) On the existence of transmission eigenvalues. Inverse Problems Imag. 3:155–172.

    MathSciNet  MATH  Google Scholar 

  106. Kirsch A, Kress R (1993) Uniqueness in inverse obstacle scattering. Inverse Problems 9:81–96.

    MathSciNet  MATH  Google Scholar 

  107. Kirsch A, Grinberg N (2008) The Factorization Method for Inverse Problems. Oxford University Press, Oxford.

    MATH  Google Scholar 

  108. Kirsch A, Ritter S (2000) A linear sampling method for inverse scattering from an open arc. Inverse Problems 16:89–105.

    MathSciNet  MATH  Google Scholar 

  109. Kleinman RE, Roach GF (1982) On modified Green’s functions in exterior problems for the Helmholtz equation. Proc. R. Soc. Lond. A383:313–332.

    MathSciNet  Google Scholar 

  110. Kress R (1995) Inverse scattering from an open arc. Math. Methods Appl. Sci. 18:267–293.

    MathSciNet  MATH  Google Scholar 

  111. Kress R (1999) Linear Integral Equations, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  112. Kress R, Lee KM (2003) Integral equation methods for scattering from an impedance crack. J. Comp. Appl. Math. 161:161–177.

    MathSciNet  MATH  Google Scholar 

  113. Kress R, Rundell W (2001) Inverse scattering for shape and impedance. Inverse Problems 17:1075–1085.

    MathSciNet  MATH  Google Scholar 

  114. Kress R, Serranho P (2005) A hybrid method for two-dimensional crack reconstruction. Inverse Problems 21:773–784.

    MathSciNet  MATH  Google Scholar 

  115. Kreyszig E (1978) Introductory Functional Analysis with Applications. Wiley, New York.

    MATH  Google Scholar 

  116. Kusiak S, Sylvester J (2003) The scattering support. Comm. Pure Appl. Math. 56:1525–1548.

    MathSciNet  MATH  Google Scholar 

  117. Kusiak S, Sylvester J (2005) The convex scattering support in a background medium. SIAM J. Math. Anal. 36:1142–1158.

    MathSciNet  MATH  Google Scholar 

  118. Lakshtanov E, Vainberg B (2012) Bounds on positive interior transmission eigenvalues. Inverse Problems 28:105005.

    MathSciNet  Google Scholar 

  119. Lakshtanov E, Vainberg B (2012) Remarks on interior transmission eigenvalues, Weyl formula and branching billiards. J. Phys. A 25 12:125202.

    Google Scholar 

  120. Lakshtanov E, Vainberg B (2012) Ellipticity in the interior transmission problem in anisotropic media. SIAM J. Math. Anal. 44 2:1165–1174.

    MathSciNet  MATH  Google Scholar 

  121. Lebedev NN (1965) Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  122. Leung YJ, Colton D (2012) Complex transmission eigenvalues for spherically stratified media. Inverse Problems 28:2944956.

    MathSciNet  Google Scholar 

  123. Levin B Y (1996) Lectures on Entire Functions. American Mathematical Society. Providence, RI.

    MATH  Google Scholar 

  124. Lions J, Magenes E (1972) Non-homogeneous Boundary Value Problems and Applications. Springer, New York.

    Google Scholar 

  125. Magnus W (1949) Fragen der Eindeutigkeit und des Verhattens im Unendlichen für Lösungen von Δ u + k 2 u = 0. Abh. Math. Sem. Hamburg 16:77–94.

    MathSciNet  MATH  Google Scholar 

  126. McLaughlin JR, Polyakov PL (1994) On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Differential Equations 107:351–382.

    MathSciNet  MATH  Google Scholar 

  127. McLean W (2000) Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  128. Mönch L (1997) On the inverse acoustic scattering problem by an open arc: the sound-hard case. Inverse Problems 13:1379–1392

    MathSciNet  MATH  Google Scholar 

  129. Monk P (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford.

    MATH  Google Scholar 

  130. Morozov VA (1984) Methods for Solving Incorrectly Posed Problems. Springer, New York.

    Google Scholar 

  131. Müller C (1952) Über die ganzen Lösungen der Wellengleichung. Math. Annalen 124:235–264

    MATH  Google Scholar 

  132. Nintcheu Fata S, Guzina BB (2004) A linear sampling method for near-field inverse problems in elastodynamics. Inverse Problems 20:713–736.

    MathSciNet  MATH  Google Scholar 

  133. Norris AN (1998) A direct inverse scattering method for imaging obstacles with unknown surface conditions. IMA J. Applied Math. 61:267–290.

    MathSciNet  MATH  Google Scholar 

  134. Päivärinta L, Sylvester J. (2008) Transmission eigenvalues. SIAM J. Math. Anal. 40 738–753.

    Google Scholar 

  135. Pelekanos G, Sevroglou V (2003) Inverse scattering by penetrable objects in two-dimensional elastodynamics. J. Comp. Appl. Math. 151:129–140.

    MathSciNet  MATH  Google Scholar 

  136. Piana M (1998) On uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Problems 14:1565–1579.

    MathSciNet  MATH  Google Scholar 

  137. Potthast R (1999) Electromagnetic scattering from an orthotropic medium. J. Integral Equations Appl. 11:197–215.

    MathSciNet  MATH  Google Scholar 

  138. Potthast R (2000) Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114:247–274.

    MathSciNet  MATH  Google Scholar 

  139. Potthast R (2001) Point Sourse and Multipoles in Inverse Scattering Theory. Research Notes in Mathematics, Vol 427, Chapman and Hall/CRC, Boca Raton, FL.

    Google Scholar 

  140. Potthast R (2004) A new non-iterative singular sources method for the reconstruction of piecewise constant media. Numer. Math. 98:703–730.

    MathSciNet  MATH  Google Scholar 

  141. Potthast R, Sylvester J, Kusiak S (2003) A ’range test’ for determining scatterers with unknown physical properties. Inverse Problems 19:533–47.

    MathSciNet  MATH  Google Scholar 

  142. Pöschel J, Trubowitz E (1987) Inverse Spectral Theory. Academic, Boston.

    MATH  Google Scholar 

  143. Rellich F (1943) Über das asymptotische Verhalten der Lösungen von △ u +λ u = 0 im unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53:57–65.

    MathSciNet  MATH  Google Scholar 

  144. Riesz F (1918) Über lineare Funktionalgleichungen. Acta Math. 41:71–98.

    MathSciNet  Google Scholar 

  145. Robert D (2004) Non-linear eigenvalue problems. Mat. Contemp. 26:109–127.

    MathSciNet  MATH  Google Scholar 

  146. Rondi L (2003) Unique determination of non-smooth sound-soft scatteres by finitely many far field measurements. Indiana University Math. J. 52:1631–62.

    MathSciNet  MATH  Google Scholar 

  147. Rundell W, Sacks P (1992) Reconstruction techniques for classical inverse Sturm-Liouville problems. Math. Comput. 58:161–183.

    MathSciNet  MATH  Google Scholar 

  148. Rynne BP, Sleeman BD (1991) The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22:1755–1762.

    MathSciNet  MATH  Google Scholar 

  149. Schechter M (2002) Principles of Functional Analysis, 2nd edn. American Mathematical Society, Providence, RI.

    Google Scholar 

  150. Sevroglou V (2005) The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering. Inverse Problems 21:717–738.

    MathSciNet  MATH  Google Scholar 

  151. Stefanov P, Uhlmann G (2004) Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132:1351–54.

    MathSciNet  MATH  Google Scholar 

  152. Stephan EP (1987) Boundary integral equations for screen problems in 3. Integral Equations Operator Theory 10:236–257.

    MathSciNet  MATH  Google Scholar 

  153. Stephan EP, Wendland W (1984) An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18:183–219.

    MathSciNet  Google Scholar 

  154. Sylvester J (2012) Discreteness of transmission eigenvalues via upper triangular compact operator. SIAM J. Math. Anal. 44:341–354.

    MathSciNet  MATH  Google Scholar 

  155. Tacchino A, Coyle J, Piana M (2002) Numerical validation of the linear sampling method. Inverse Problems 18:511–527.

    MathSciNet  MATH  Google Scholar 

  156. Ursell F (1978) On the exterior problems of acoustics II. Proc. Cambridge Phil. Soc. 84:545–548.

    MathSciNet  MATH  Google Scholar 

  157. Vekua IN (1943) Metaharmonic functions. Trudy Tbilisskogo Matematichesgo Instituta 12:105–174.

    Google Scholar 

  158. Xu Y, Mawata C, Lin W (2000) Generalized dual space indicator method for underwater imaging. Inverse Problems 16:1761–1776.

    MathSciNet  MATH  Google Scholar 

  159. You YX, Miao GP (2002) An indicator sampling method for solving the inverse acoustic scattering problem from penetrable obstacles. Inverse Problems 18:859–880.

    MathSciNet  MATH  Google Scholar 

  160. You YX, Miao GP, Liu YZ (2000) A fast method for acoustic imaging of multiple three-dimensional objects. J. Acoust. Soc. Am. 108:31–37.

    Google Scholar 

  161. Young RM (2001) An Introduction to Nonharmonic Fourier Series. Academic, San Diego.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cakoni, F., Colton, D. (2014). Scattering by Orthotropic Media. In: A Qualitative Approach to Inverse Scattering Theory. Applied Mathematical Sciences, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8827-9_5

Download citation

Publish with us

Policies and ethics