Ill-Posed Problems

  • Fioralba Cakoni
  • David Colton
Part of the Applied Mathematical Sciences book series (AMS, volume 188)


For problems in mathematical physics, Hadamard postulated three properties that he deemed to be of central importance:


  1. 1.
    Aktosun T, Gintides D, Papanicolaou V (2011) The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 27:115004.MathSciNetGoogle Scholar
  2. 2.
    Aktosun T, Papanicolaou V (2013) Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Problems 29:065007.MathSciNetGoogle Scholar
  3. 3.
    Angell T, Kirsch A (1992) The conductive boundary condition for Maxwell’s equations. SIAM J. Appl. Math. 52:1597–1610.MathSciNetMATHGoogle Scholar
  4. 4.
    Angell T, Kirsch A (2004) Optimization Methods in Electromagnetic Radiation. Springer, New York.MATHGoogle Scholar
  5. 5.
    Arens T (2001) Linear sampling methods for 2D inverse elastic wave scattering. Inverse Problems 17:1445–1464.MathSciNetMATHGoogle Scholar
  6. 6.
    Arens T (2004) Why linear sampling works. Inverse Problems 20:163–173.MathSciNetMATHGoogle Scholar
  7. 7.
    Arens T, Lechleiter A(2009) The linear sampling method revisited. J. Integral Equations Appl. 21:179–203.MathSciNetMATHGoogle Scholar
  8. 8.
    Boas Jr, Ralph P (1954) Entire Functions. Academic, New York.Google Scholar
  9. 9.
    Bonnet-BenDhia AS, Chesnel L, Haddar H (2011) On the use of t-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci., Ser. I 340:647–651.MathSciNetGoogle Scholar
  10. 10.
    Bonnet-BenDhia AS, Ciarlet P, Maria Zwölf C (2010) Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math 234:1912–1919.MathSciNetGoogle Scholar
  11. 11.
    Bressan A (2013) Lecture Notes on Functional Analysis with Applications to Linear Partial Differential Equations. American Mathematical Society, Providence, RI.MATHGoogle Scholar
  12. 12.
    Buchanan JL, Gilbert RP, Wirgin A, Xu Y (2004) Marine Acoustics. Direct and Inverse Problems. SIAM, Philadelphia.MATHGoogle Scholar
  13. 13.
    Cakoni F, Colton D (2003) A uniqueness theorem for an inverse electomagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinb. Math. Soc. 46:293–314.MathSciNetMATHGoogle Scholar
  14. 14.
    Cakoni F, Colton D (2003) On the mathematical basis of the linear sampling method. Georgian Math. J. 10/3:411–425.Google Scholar
  15. 15.
    Cakoni F, Colton D (2003) The linear sampling method for cracks. Inverse Problems 19:279–295.MathSciNetMATHGoogle Scholar
  16. 16.
    Cakoni F, Colton D (2003) Combined far field operators in electromagnetic inverse scattering theory. Math. Methods Appl. Sci. 26:413–429.MathSciNetMATHGoogle Scholar
  17. 17.
    Cakoni F, Colton D (2004) The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64:709–723.MathSciNetMATHGoogle Scholar
  18. 18.
    Cakoni F, Colton D (2005) Open problems in the qualitative approach to inverse electromagnetic scattering theory. Eur. J. Appl. Math. to appear.Google Scholar
  19. 19.
    Cakoni F, Colton D, Gintides D (2010) The interior transmission eigenvalue problem. SIAM J. Math. Anal. 42:2912–2921.MathSciNetMATHGoogle Scholar
  20. 20.
    Cakoni F, Colton D, Haddar H (2002) The linear sampling method for anisotropic media. J. Comp. Appl. Math. 146:285–299.MathSciNetMATHGoogle Scholar
  21. 21.
    Cakoni F, Colton D, Haddar H (2009) The computation of lower bounds for the norm of the index of refraction in an anisotropic media. J. Integral Equations Appl. 21(2):203–227.MathSciNetMATHGoogle Scholar
  22. 22.
    Cakoni F, Colton D, Haddar H (2010) On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Math. Acad. Sci. Paris, Ser I 348(7–8):379–383.MathSciNetMATHGoogle Scholar
  23. 23.
    Cakoni F, Colton D, Monk P (2001) The direct and inverse scattering problems for partially coated obstacles. Inverse Problems 17:1997–2015.MathSciNetMATHGoogle Scholar
  24. 24.
    Cakoni F, Colton D, Monk P (2004) The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. 134A:661–682.MathSciNetGoogle Scholar
  25. 25.
    Cakoni F, Colton D, Monk P (2010) The determination of boundary coefficients from far field measurements. J. Int. Equations Appl. 42(2):167–191.MathSciNetGoogle Scholar
  26. 26.
    Cakoni F, Colton D, Monk P (2011) The Linear Sampling Method in Inverse Electromagnetic Scattering. CBMS-NSF Regional Conference Series in Applied Mathematics 80, SIAM, Philadelphia.Google Scholar
  27. 27.
    Cakoni F, Colton D, Monk P (2005) The determination of the surface conductivity of a partially coated dielectric. SIAM J. Appl. Math. 65:767–789.MathSciNetMATHGoogle Scholar
  28. 28.
    Cakoni F, Colton D, Monk P, Sun J (2010) The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems 26:074004.MathSciNetGoogle Scholar
  29. 29.
    Cakoni F, Darrigrand E (2005) The inverse electromagnetic scattering problem for a mixed boundary value problem for screens. J. Comp. Appl. Math. 174:251–269.MathSciNetMATHGoogle Scholar
  30. 30.
    Cakoni F, Fares M, Haddar H (2006) Anals of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Problems 42:237–255.MathSciNetGoogle Scholar
  31. 31.
    Cakoni F, Gintides D, Haddar H (2010) The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42:237–255.MathSciNetMATHGoogle Scholar
  32. 32.
    Cakoni F, Haddar H (2013) Transmission eigenvalues in inverse scattering theory Inverse Problems and Applications, Inside Out 60, MSRI Publications, Berkeley, CA.Google Scholar
  33. 33.
    Cakoni F, Haddar H (2008), On the existence of transmission eigenvalues in an inhomogeneous medium. Applicable Anal. 88(4):475–493.MathSciNetGoogle Scholar
  34. 34.
    Cakoni F, Haddar H (2003) Interior transmission problem for anisotropic media. Mathematical and Numerical Aspects of Wave Propagation (Cohen et al., eds.), Springer, 613–618.Google Scholar
  35. 35.
    Cakoni F, Kirsch A (2010) On the interior transmission eigenvalue problem (2010) Int. J. Comp. Sci. Math. 3:142–167.MathSciNetMATHGoogle Scholar
  36. 36.
    Chanillo S, Helffer B, Laptev A (2004) Nonlinear eigenvalues and analytic hypoellipticity. J. Functional Analysis 209:425–443.MathSciNetMATHGoogle Scholar
  37. 37.
    Charalambopoulos A, Gintides D, Kiriaki K (2002) The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Problems 18:547–558.MathSciNetMATHGoogle Scholar
  38. 38.
    Charalambopoulos A, Gintides D, Kiriaki K (2003) The linear sampling method for non-absorbing penetrable elastic bodies. Inverse Problems 19:549–561.MathSciNetMATHGoogle Scholar
  39. 39.
    Chesnel L (2012) Étude de quelques problémes de transmission avec changement de signe. Application aux métamatériaux. Ph.D. thesis. École Doctorale de l’École Polytechnique, France.Google Scholar
  40. 40.
    Chesnel L (2012) Interior transmission eigenvalue problem for Maxwell’s equations: the T-coercivity as an alternative approach. Inverse Problems 28:065005.MathSciNetGoogle Scholar
  41. 41.
    Cheng J, Yamamoto M (2003) Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19:1361–1384.MathSciNetGoogle Scholar
  42. 42.
    Collino F, Fares M, Haddar H (2003) Numerical and analytical studies of the linear sampling method in electromagnetic inverse scattering problems. Inverse Problems 19:1279–1298.MathSciNetMATHGoogle Scholar
  43. 43.
    Colton D (2004) Partial Differential Equations: An Introduction. Dover, New York.Google Scholar
  44. 44.
    Colton D, Coyle J, Monk P (2000) Recent developments in inverse acoustic scattering theory. SIAM Rev. 42:369–414.MathSciNetMATHGoogle Scholar
  45. 45.
    Colton D (1980) Analytic Theory of Partial Differential Equations. Pitman Advanced Publishing Program, Boston.MATHGoogle Scholar
  46. 46.
    Colton D, Erbe C (1996) Spectral theory of the magnetic far field operator in an orthotropic medium, in Nonlinear Problems in Applied Mathematics, SIAM, Philadelphia.Google Scholar
  47. 47.
    Colton D, Haddar H (2005) An application of the reciprocity gap functional to inverse scattering theory. Inverse Problems 21:383–398.MathSciNetMATHGoogle Scholar
  48. 48.
    Colton D, Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24:719–731.MathSciNetMATHGoogle Scholar
  49. 49.
    Colton D, Haddar H, Piana P (2003) The linear sampling method in inverse electromagnetic scattering theory. Inverse Problems 19:S105–S137.MathSciNetMATHGoogle Scholar
  50. 50.
    Colton D, Kirsch A (1996) A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12:383–393.MathSciNetMATHGoogle Scholar
  51. 51.
    Colton D, Kress R (1983) Integral Equation Methods in Scattering Theory. Wiley, New York.MATHGoogle Scholar
  52. 52.
    Colton D, Kress R (1995) Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26:601–615.MathSciNetMATHGoogle Scholar
  53. 53.
    Colton D, Kress R (1995) Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55:1724–35.MathSciNetMATHGoogle Scholar
  54. 54.
    Colton D, Kress R (2013) Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York.MATHGoogle Scholar
  55. 55.
    Colton D, Kress R (2001) On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24:1289–1303.MathSciNetMATHGoogle Scholar
  56. 56.
    Colton D, Leung YJ (2013) Complex eigenvalues and the inverse spectral problem for transmission eigenvalues. Inverse Problems. 29:104008.Google Scholar
  57. 57.
    Colton D, Kress R, Monk P. (1997) Inverse scattering from an orthotropic medium. J. Comp. Appl. Math. 81:269–298.MathSciNetMATHGoogle Scholar
  58. 58.
    Colton D, Monk P. (1999) A linear sampling method for the detection of leukemia using microwaves. II. SIAM J. Appl. Math. 69, 241–255.Google Scholar
  59. 59.
    Colton D, Päivarinta L (1992) The uniqueness of a solution to an inverse scattering problem for electromagnetic wave. Arch. Rational Mech. Anal. 119:59–70.MathSciNetMATHGoogle Scholar
  60. 60.
    Colton D, Päivärinta L, Sylvester J (2007) The interior transmission problem. Inverse Problems Imag. 1:13–28.MATHGoogle Scholar
  61. 61.
    Colton D, Piana M, Potthast R (1997) A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Problems 13:1477–1493.MathSciNetMATHGoogle Scholar
  62. 62.
    Colton D, Sleeman BD (1983) Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31:253–59.MathSciNetMATHGoogle Scholar
  63. 63.
    Colton D, Sleeman BD (2001) An approximation property of importance in inverse scattering theory. Proc. Edinb. Math. Soc. 44:449–454.MathSciNetMATHGoogle Scholar
  64. 64.
    Costabel M, Dauge M (2002) Crack singularities for general elliptic systems. Math. Nachr. 235:29–49.MathSciNetMATHGoogle Scholar
  65. 65.
    Costabel M, Dauge M (1996) A singularly perturbed mixed boundary value problem. Comm. Partial Differential Equations 21:1919–1949.MathSciNetMATHGoogle Scholar
  66. 66.
    Cossonnière A, Haddar H (2011) The electromagnetic interior transmission problem for regions with cavities. SIAM J. Math. Anal. 43:1698–1715.MathSciNetMATHGoogle Scholar
  67. 67.
    Coyle J (2000) An inverse electromagnetic scattering problem in a two-layered background. Inverse Problems 16:275–292.MathSciNetMATHGoogle Scholar
  68. 68.
    Engl HW, Hanke M, Neubauer A (1996) Regularization of Inverse Problems. Kluwer, Dordrecht.MATHGoogle Scholar
  69. 69.
    Fredholm I (1903) Sur une classe d’équations fonctionelles. Acta Math. 27:365–390.MathSciNetMATHGoogle Scholar
  70. 70.
    Friedman A (1969) Partial Differential Equations. Holt, Rinehart and Winston, New York.MATHGoogle Scholar
  71. 71.
    Ghosh Roy DN, Couchman LS (2002) Inverse Problems and Inverse Scattering of Plane Waves. Academic, London.Google Scholar
  72. 72.
    Gilbarg D, Trudinger NS (1983) Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin.MATHGoogle Scholar
  73. 73.
    Gintides D, Kiriaki K (2001) The far-field equations in linear elasticity – an inversion scheme. Z. Angew. Math. Mech. 81:305–316.MathSciNetMATHGoogle Scholar
  74. 74.
    Griesmaier R, Hanke M, Sylvester J (to appear) Far field splitting for the Helmholtz equation.Google Scholar
  75. 75.
    Grinberg NI, Kirsch A (2002) The linear sampling method in inverse obstacle scattering for impedance boundary conditions. J. Inv. Ill-Posed Problems 10:171–185.MathSciNetMATHGoogle Scholar
  76. 76.
    Grinberg NI, Kirsch A (2004) The factorization method for obstacles with a-priori separated sound-soft and sound-hard parts. Math. Comput. Simulation 66:267–279MathSciNetMATHGoogle Scholar
  77. 77.
    Gylys-Colwell F (1996) An inverse problem for the Helmholtz equation. Inverse Problems 12:139–156.MathSciNetMATHGoogle Scholar
  78. 78.
    Haddar H (2004) The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem. Math. Methods Appl. Sci. 27:2111–2129.MathSciNetMATHGoogle Scholar
  79. 79.
    Haddar H, Joly P (2002)Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comp. Appl. Math. 143:201–236.MathSciNetMATHGoogle Scholar
  80. 80.
    Haddar H, Monk P (2002) The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Problems 18:891–906.MathSciNetMATHGoogle Scholar
  81. 81.
    Hähner P (2000) On the uniqueness of the shape of a penetrable, anisotropic obstacle. J. Comp. Appl. Math. 116:167–180.MATHGoogle Scholar
  82. 82.
    Hähner P (2002) Electromagnetic wave scattering: theory. in Scattering (Pike and Sabatier, eds.) Academic, New York.Google Scholar
  83. 83.
    Hartman P, Wilcox C (1961) On solutions of the Helmholtz equation in exterior domains. Math. Zeit. 75:228–255.MathSciNetMATHGoogle Scholar
  84. 84.
    Hitrik M, Krupchyk K, Ola P, Päivärinta L (2010) Transmission eigenvalues for operators with constant coefficients. SIAM J. Math. Anal. 42:2965–2986.MathSciNetMATHGoogle Scholar
  85. 85.
    Hitrik M, Krupchyk K, Ola P and Päivärinta L (2011) The interior transmission problem and bounds on transmission eigenvalues. Math Res. Lett. 18:279–293.MathSciNetMATHGoogle Scholar
  86. 86.
    Hitrik M, Krupchyk K, Ola P, Päivärinta L (2011) Transmission eigenvalues for elliptic operators. SIAM J. Math. Anal. 43:2630–2639.MathSciNetMATHGoogle Scholar
  87. 87.
    Hochstadt H (1973) Integral Equations. Wiley, New York.MATHGoogle Scholar
  88. 88.
    Hooper AE, Hambric HN (1999) Unexploded ordinance (UXO): The problem. Detection and Identification of Visually Obscured Targets (Baum, ed.), Taylor and Francis, Philadelphia.Google Scholar
  89. 89.
    Hörmander L (1985) The Analysis of Linear Partial Differential Operators III. Springer, Berlin.MATHGoogle Scholar
  90. 90.
    Hsiao G, Wendland WL (2008) Boundary Integral Equations. Springer, Berlin.MATHGoogle Scholar
  91. 91.
    Ikehata M (1998) Reconstruction of the shape of an obstacle from scattering amplitude at a fixed frequency. Inverse Problems 14:949–954.MathSciNetMATHGoogle Scholar
  92. 92.
    Ikehata M (1999) Reconstructions of obstacle from boundary measurements. Waves Motion 30:205–223.MathSciNetMATHGoogle Scholar
  93. 93.
    Isakov V (1988) On the uniqueness in the inverse transmission scattering problem. Comm. Partial Differential Equations 15:1565–1587.MathSciNetGoogle Scholar
  94. 94.
    Isakov V (1998) Inverse Problems for Partial Differential Equations. Springer, New York.MATHGoogle Scholar
  95. 95.
    John F (1982) Partial Differential Equations, 4th ed. Springer Verlag, New York.MATHGoogle Scholar
  96. 96.
    Jones DS (1974) Integral equations for the exterior acoustic problem. Q. J. Mech. Appl. Math. 27:129–142.MATHGoogle Scholar
  97. 97.
    Y. Katznelson (9168) An Introduction to Harmonic Analysis. Wiley, New York.Google Scholar
  98. 98.
    Kirsch A (2011) An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, New York.MATHGoogle Scholar
  99. 99.
    Kirsch A (1998) Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Problems 14:1489–1512.MathSciNetMATHGoogle Scholar
  100. 100.
    Kirsch A (1999) Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Problems 15:413–29.MathSciNetMATHGoogle Scholar
  101. 101.
    Kirsch A (2002) The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Problems 18:1025–1040.MathSciNetMATHGoogle Scholar
  102. 102.
    Kirsch A (2004) The factorization method for Maxwell’s equations. Inverse Problems 20:S117-S134.MathSciNetMATHGoogle Scholar
  103. 103.
    Kirsch A (2005) The factorization method for a class of inverse elliptic problems. Math. Nachr. 278:258–277.MathSciNetMATHGoogle Scholar
  104. 104.
    Kirsch A (2008) An integral equation for the scattering problem for an anisotropic medium and the factorization method. Advanced Topics in Scattering and Biomedical Engineering, Proceedings of the 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific, New Jersey.Google Scholar
  105. 105.
    Kirsch A (2009) On the existence of transmission eigenvalues. Inverse Problems Imag. 3:155–172.MathSciNetMATHGoogle Scholar
  106. 106.
    Kirsch A, Kress R (1993) Uniqueness in inverse obstacle scattering. Inverse Problems 9:81–96.MathSciNetMATHGoogle Scholar
  107. 107.
    Kirsch A, Grinberg N (2008) The Factorization Method for Inverse Problems. Oxford University Press, Oxford.MATHGoogle Scholar
  108. 108.
    Kirsch A, Ritter S (2000) A linear sampling method for inverse scattering from an open arc. Inverse Problems 16:89–105.MathSciNetMATHGoogle Scholar
  109. 109.
    Kleinman RE, Roach GF (1982) On modified Green’s functions in exterior problems for the Helmholtz equation. Proc. R. Soc. Lond. A383:313–332.MathSciNetGoogle Scholar
  110. 110.
    Kress R (1995) Inverse scattering from an open arc. Math. Methods Appl. Sci. 18:267–293.MathSciNetMATHGoogle Scholar
  111. 111.
    Kress R (1999) Linear Integral Equations, 2nd edn. Springer, New York.MATHGoogle Scholar
  112. 112.
    Kress R, Lee KM (2003) Integral equation methods for scattering from an impedance crack. J. Comp. Appl. Math. 161:161–177.MathSciNetMATHGoogle Scholar
  113. 113.
    Kress R, Rundell W (2001) Inverse scattering for shape and impedance. Inverse Problems 17:1075–1085.MathSciNetMATHGoogle Scholar
  114. 114.
    Kress R, Serranho P (2005) A hybrid method for two-dimensional crack reconstruction. Inverse Problems 21:773–784.MathSciNetMATHGoogle Scholar
  115. 115.
    Kreyszig E (1978) Introductory Functional Analysis with Applications. Wiley, New York.MATHGoogle Scholar
  116. 116.
    Kusiak S, Sylvester J (2003) The scattering support. Comm. Pure Appl. Math. 56:1525–1548.MathSciNetMATHGoogle Scholar
  117. 117.
    Kusiak S, Sylvester J (2005) The convex scattering support in a background medium. SIAM J. Math. Anal. 36:1142–1158.MathSciNetMATHGoogle Scholar
  118. 118.
    Lakshtanov E, Vainberg B (2012) Bounds on positive interior transmission eigenvalues. Inverse Problems 28:105005.MathSciNetGoogle Scholar
  119. 119.
    Lakshtanov E, Vainberg B (2012) Remarks on interior transmission eigenvalues, Weyl formula and branching billiards. J. Phys. A 25 12:125202.Google Scholar
  120. 120.
    Lakshtanov E, Vainberg B (2012) Ellipticity in the interior transmission problem in anisotropic media. SIAM J. Math. Anal. 44 2:1165–1174.MathSciNetMATHGoogle Scholar
  121. 121.
    Lebedev NN (1965) Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs, NJ.MATHGoogle Scholar
  122. 122.
    Leung YJ, Colton D (2012) Complex transmission eigenvalues for spherically stratified media. Inverse Problems 28:2944956.MathSciNetGoogle Scholar
  123. 123.
    Levin B Y (1996) Lectures on Entire Functions. American Mathematical Society. Providence, RI.MATHGoogle Scholar
  124. 124.
    Lions J, Magenes E (1972) Non-homogeneous Boundary Value Problems and Applications. Springer, New York.Google Scholar
  125. 125.
    Magnus W (1949) Fragen der Eindeutigkeit und des Verhattens im Unendlichen für Lösungen von Δ u + k 2 u = 0. Abh. Math. Sem. Hamburg 16:77–94.MathSciNetMATHGoogle Scholar
  126. 126.
    McLaughlin JR, Polyakov PL (1994) On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Differential Equations 107:351–382.MathSciNetMATHGoogle Scholar
  127. 127.
    McLean W (2000) Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge.MATHGoogle Scholar
  128. 128.
    Mönch L (1997) On the inverse acoustic scattering problem by an open arc: the sound-hard case. Inverse Problems 13:1379–1392MathSciNetMATHGoogle Scholar
  129. 129.
    Monk P (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford.MATHGoogle Scholar
  130. 130.
    Morozov VA (1984) Methods for Solving Incorrectly Posed Problems. Springer, New York.Google Scholar
  131. 131.
    Müller C (1952) Über die ganzen Lösungen der Wellengleichung. Math. Annalen 124:235–264MATHGoogle Scholar
  132. 132.
    Nintcheu Fata S, Guzina BB (2004) A linear sampling method for near-field inverse problems in elastodynamics. Inverse Problems 20:713–736.MathSciNetMATHGoogle Scholar
  133. 133.
    Norris AN (1998) A direct inverse scattering method for imaging obstacles with unknown surface conditions. IMA J. Applied Math. 61:267–290.MathSciNetMATHGoogle Scholar
  134. 134.
    Päivärinta L, Sylvester J. (2008) Transmission eigenvalues. SIAM J. Math. Anal. 40 738–753.Google Scholar
  135. 135.
    Pelekanos G, Sevroglou V (2003) Inverse scattering by penetrable objects in two-dimensional elastodynamics. J. Comp. Appl. Math. 151:129–140.MathSciNetMATHGoogle Scholar
  136. 136.
    Piana M (1998) On uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Problems 14:1565–1579.MathSciNetMATHGoogle Scholar
  137. 137.
    Potthast R (1999) Electromagnetic scattering from an orthotropic medium. J. Integral Equations Appl. 11:197–215.MathSciNetMATHGoogle Scholar
  138. 138.
    Potthast R (2000) Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114:247–274.MathSciNetMATHGoogle Scholar
  139. 139.
    Potthast R (2001) Point Sourse and Multipoles in Inverse Scattering Theory. Research Notes in Mathematics, Vol 427, Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
  140. 140.
    Potthast R (2004) A new non-iterative singular sources method for the reconstruction of piecewise constant media. Numer. Math. 98:703–730.MathSciNetMATHGoogle Scholar
  141. 141.
    Potthast R, Sylvester J, Kusiak S (2003) A ’range test’ for determining scatterers with unknown physical properties. Inverse Problems 19:533–47.MathSciNetMATHGoogle Scholar
  142. 142.
    Pöschel J, Trubowitz E (1987) Inverse Spectral Theory. Academic, Boston.MATHGoogle Scholar
  143. 143.
    Rellich F (1943) Über das asymptotische Verhalten der Lösungen von △ u +λ u = 0 im unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53:57–65.MathSciNetMATHGoogle Scholar
  144. 144.
    Riesz F (1918) Über lineare Funktionalgleichungen. Acta Math. 41:71–98.MathSciNetGoogle Scholar
  145. 145.
    Robert D (2004) Non-linear eigenvalue problems. Mat. Contemp. 26:109–127.MathSciNetMATHGoogle Scholar
  146. 146.
    Rondi L (2003) Unique determination of non-smooth sound-soft scatteres by finitely many far field measurements. Indiana University Math. J. 52:1631–62.MathSciNetMATHGoogle Scholar
  147. 147.
    Rundell W, Sacks P (1992) Reconstruction techniques for classical inverse Sturm-Liouville problems. Math. Comput. 58:161–183.MathSciNetMATHGoogle Scholar
  148. 148.
    Rynne BP, Sleeman BD (1991) The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22:1755–1762.MathSciNetMATHGoogle Scholar
  149. 149.
    Schechter M (2002) Principles of Functional Analysis, 2nd edn. American Mathematical Society, Providence, RI.Google Scholar
  150. 150.
    Sevroglou V (2005) The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering. Inverse Problems 21:717–738.MathSciNetMATHGoogle Scholar
  151. 151.
    Stefanov P, Uhlmann G (2004) Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132:1351–54.MathSciNetMATHGoogle Scholar
  152. 152.
    Stephan EP (1987) Boundary integral equations for screen problems in 3. Integral Equations Operator Theory 10:236–257.MathSciNetMATHGoogle Scholar
  153. 153.
    Stephan EP, Wendland W (1984) An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18:183–219.MathSciNetGoogle Scholar
  154. 154.
    Sylvester J (2012) Discreteness of transmission eigenvalues via upper triangular compact operator. SIAM J. Math. Anal. 44:341–354.MathSciNetMATHGoogle Scholar
  155. 155.
    Tacchino A, Coyle J, Piana M (2002) Numerical validation of the linear sampling method. Inverse Problems 18:511–527.MathSciNetMATHGoogle Scholar
  156. 156.
    Ursell F (1978) On the exterior problems of acoustics II. Proc. Cambridge Phil. Soc. 84:545–548.MathSciNetMATHGoogle Scholar
  157. 157.
    Vekua IN (1943) Metaharmonic functions. Trudy Tbilisskogo Matematichesgo Instituta 12:105–174.Google Scholar
  158. 158.
    Xu Y, Mawata C, Lin W (2000) Generalized dual space indicator method for underwater imaging. Inverse Problems 16:1761–1776.MathSciNetMATHGoogle Scholar
  159. 159.
    You YX, Miao GP (2002) An indicator sampling method for solving the inverse acoustic scattering problem from penetrable obstacles. Inverse Problems 18:859–880.MathSciNetMATHGoogle Scholar
  160. 160.
    You YX, Miao GP, Liu YZ (2000) A fast method for acoustic imaging of multiple three-dimensional objects. J. Acoust. Soc. Am. 108:31–37.Google Scholar
  161. 161.
    Young RM (2001) An Introduction to Nonharmonic Fourier Series. Academic, San Diego.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fioralba Cakoni
    • 1
  • David Colton
    • 1
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations