Skip to main content

Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Macronutrients play a very important role in plant growth and development. Their functions range from being structural units to redox-sensitive agents. Generally, application of macronutrient increases yield, growth, and quality of crops. In the recent years, however, plant physiologists, biotechnologists, and eco-physiologists have been working to investigate various other blind features of these minerals and their future prospective, because nutrients are involved in every step of plant life. Every macronutrient has its own character, and is therefore involved in different metabolic processes of plant life. Herein, this chapter deals with the recent progress made in discovering the roles of macronutrients in plant growth and acclimation process as well as future prospective of elemental research in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Abdin MZ (2000) Interactive effect of Nitrogen and Sulfur on the oil and protein contents and on the fatty acid profiles of oil in the seeds of rapeseed (Brassica campestris L.) and mustard (Brassica juncea L. Czern and Coss). J Agronomy Crop Science 183:1–6

    Google Scholar 

  • Ahmad A, Abraham G, Gandotra N, Abrol YP, Abdin MZ (1998) Interactive effect of nitrogen and sulfur on growth and yield of rapeseed-mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) genotypes. J Agron Crop Sci 181:193–199

    Google Scholar 

  • Ahmad A, Abrol YP, Abdin MZ (1999) Effect of split application of sulfur and nitrogen on growth and yield attributes of Brassica genotypes differing in time of flowering. Can J Plant Sci 79:175–180

    Google Scholar 

  • Ahn IP, Suh SC (2007) Calcium restores prepenetration morphogenesis abolished by methylglyoxal-bis-guanyl hydrazone in Cochliobolus miyabeanus infecting rice. Phytopathology 97(3):331–337

    CAS  PubMed  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress, vol 3. Marcel Dekker, New York, pp 285–313

    Google Scholar 

  • All A, Sahm M, Niazi BH (2002) Role of sulphur for potassium/sodium ratio in sunflower under saline conditions. Helia 25(37):69–78

    Google Scholar 

  • Alvarez JM, Vidal EA, Gutiérrez RA (2012) Integration of local and systemic signaling pathways for plant N responses. Curr Opin Plant Biol 15(2):185–191

    CAS  PubMed  Google Scholar 

  • Andjelkovic V, Thompson R (2006) Changes in gene expression in maize kernel in response to water and salt stress. Plant Cell Rep 25:71–79

    CAS  PubMed  Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Nafees NA (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione: sulphur protects mustard from cadmium toxicity. Plant Growth Regul 54:271–279

    CAS  Google Scholar 

  • Anonymous (1998) Functions of potassium in plants. Better Crops 82:4–5

    Google Scholar 

  • Anza M, Riga P, Garbisu C (2005) Time course of antioxidant responses of Capsicum annuum subjected to progressive magnesium deficiency. Ann Appl Biol 146:123–134

    CAS  Google Scholar 

  • Ash R (2005) The Top 10 of everything 2006: the ultimate book of lists. Dk Publishing, pp 1–256, ISBN 0-7566-1321–3, United Kingdom

    Google Scholar 

  • Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    CAS  Google Scholar 

  • Assuero SG, Mollier A, Pellerin S (2004) The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant Cell Environ 27:887–895

    CAS  Google Scholar 

  • Ballantyne P (2009) CGIAR science forum. Suppl Crop Sci 50:1–192

    Google Scholar 

  • Barker AV, Pilbeam DJ (2010) Handbook of plant nutrition. CRC Press 117:1–605

    Google Scholar 

  • Bateman DF (1965) Discussion of the soil environment. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens: prelude to biological control. Univ California Press, Berkeley p 139

    Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    CAS  PubMed  Google Scholar 

  • Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nature Educ Knowl 2(2):12

    Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    CAS  PubMed  Google Scholar 

  • Brown D, Weselby C (2010) NASA-funded research discovers life built with toxic chemical. NASA Feature, posted on NASA December, 2. http://www.nasa.gov/

  • Bush DS (1993) Regulation of cytosolic calcium in plants. Plant Physiol 103:7–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Ann Rev Plant Physiol 46:95–122

    CAS  Google Scholar 

  • Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium-deficient leaves, but not in phosphorus-deficient leaves. J Exp Bot 45:1259–1266

    CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40

    CAS  Google Scholar 

  • Chen ZC, Ma JF (2013) Magnesium transporters and their role in Al tolerance in plants. Plant Soil 368:51–56

    CAS  Google Scholar 

  • Chen ZC, Yamaji N, Motoyama R, Nagamura Y, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen QS, Yi KK, Huang G, Wang XB, Liu FY, Wu YR, Wu P (2003) Cloning and expression pattern analysis of nitrogen-starvation-induced genes in rice. Acta Botanica Sinica-Chinese Edition 45(8):974–980

    Google Scholar 

  • Chiera J, Thomas J, Rufty T (2002) Leaf initiation and development in soybean under phosphorus stress. J Exp Bot 53:473–481

    CAS  PubMed  Google Scholar 

  • Chrispeels MJ, Crawford NM, Schroeder JI (1999) Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell 11:661–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou TS, Chao YY, Huang WD, Hong CY, Kao CH (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030

    Google Scholar 

  • Cleemputa OV, Boeckxa P (2013) Nitrogen. Encyclopedia of environmental management. doi:10.1081/E-EEM-120001574

    Google Scholar 

  • Cline MG, Thangavelu M, Dong K-II (2006) A possible role of cytokinin in mediating long-distance nitrogen signaling in the promotion of sylleptic branching in hybrid poplar. J Plant Physiol 163:684–688

    CAS  PubMed  Google Scholar 

  • Cooper RM, Williams JS (2004) Elemental sulphur as an induced antifungal substance in plant defence. J Exp Bot 55(404):1947–1953

    CAS  PubMed  Google Scholar 

  • Craig CC Jr (2002) Nitrogen use efficiency of cotton following corn in rotation and foliar fertilization of cotton using leaf blade analysis. Doctoral Dissertation, Mississippi State University, pp 1–128

    Google Scholar 

  • Ding YC, Chang CR, Luo W, Wu YS, Ren XL, Wang P, XU GH (2008) High potassium aggravates the oxidative stress induced by magnesium deficiency in rice leaves. Pedosphere 18(3):316–327

    CAS  Google Scholar 

  • Diskowski H, Hofmann T (2005) Phosphorus in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.a19-505

    Google Scholar 

  • Dordas C (2009) Role of nutrients in controlling plant diseases in sustainable agriculture: a review. In: Sustainable agriculture, Springer, Netherlands, pp 443–460

    Google Scholar 

  • Elliott DE, Reuter DJ, Reddy GD, Abbott R (1997) Phosphorus nutrition of spring wheat (Triticum aestivum L.). Effects of phosphorus supply on plant symptoms, yield, components of yield, and plant phosphorus uptake. Aust J Agric Res 455:855–867

    Google Scholar 

  • El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143(3):1231–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enghag P (2008) Encyclopedia of the elements: technical data-history-processing-applications. Wiley, University of Michigan, United States 1–1309

    Google Scholar 

  • Epstein E (1972) Mineral Nutrition of Plants: Principle and Perspectives. John Wiley and Sons, New York

    Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Phys Plant Mol Bio. 50:641–664

    Google Scholar 

  • Fazili IS, Masoodi M, Ahmad S, Jamal A, Khan JS, Abdin MZ (2010a) Oil biosynthesis and its related variables in developing seeds of mustard (Brassica juncea L.) as influenced by sulphur fertilization. J Crop Sci Biotechnol 13:39–46

    Google Scholar 

  • Fazili IS, Masoodi M, Ahmad S, Jamal A, Khan JS, Abdin MZ (2010b) Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris L. and Eruca sativa Mill.) differing in yield potential. J Plant Nutr 33:1216–1228

    CAS  Google Scholar 

  • Fernando M, Mehroke J, Glass ADM (1992) De novo synthesis of plasma membrane and tonoplast polypetides of barley roots during short-term K deprivation: in search of high-affinity K transport system. Plant Physiol 100:1269–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana PM, Zickerman CP (2010) Mitigating the environmental footprint of towed streamer seismic surveys. In 72nd EAGE conference and exhibition. http://www.earthdoc.org/. Accessed 14 June 2010

  • Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2009) Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects. Field Crop Res 114(3):329–342

    Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci U S A 96:1175–1180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62

    CAS  Google Scholar 

  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouche N, Knight MR, Fromm H (2010) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–178

    CAS  PubMed  Google Scholar 

  • García AG, Dourado-Neto D, del VBasantaM, Ovejero RFL, Favarin JL (2003) Logistic rice model for dry matter and nutrient uptake. Sci Agricola 60(3):481–488

    Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6(2):215–222

    CAS  PubMed  Google Scholar 

  • Glare TR, O’Callaghan M, Malone LA, Burgess EP (2001) Summary of current scientific awareness of the effect of genetically modified organisms on the natural environment. Rep Minist Environ 1–188

    Google Scholar 

  • Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2013) A comprehensive expression profile of MicroRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and-sufficient conditions. DNA Res 20(2):109–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond JP, Mayes S, Bowen HC, Graham NS, Hayden RM, Love CG, Broadley MR (2011) Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa. Plant Physiol 156(3):1230–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harada E, Eui Choi Y, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    CAS  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Sano H (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathway in Arabidopsis. J Plant Physiol 159:445–448

    CAS  Google Scholar 

  • Harper JF (2001) Dissecting calcium oscillators in plant cells. Trends Plant Sci 6:395–397

    CAS  PubMed  Google Scholar 

  • He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci 8(3):192–207

    Google Scholar 

  • Helal HM, Mengel K (1979) Nitrogen metabolism of young barley plants as affected by NaCl salinity and potassium. Plant Soil 51:457–462

    Google Scholar 

  • Hell R, Kruse C (2007) Sulfur in biotic interactions of plants in their environment. In: Hawkesford MJ, de Kok LJ (eds) Sulfur in plants: an ecological perspective. Dordrecht, Springer, pp 197–224

    Google Scholar 

  • Hell R, Hillebrand H (2008) Evaluation of future developments in agrobiotechnology: the potential roles of protein nitrogen and sulfur for better crop plants. Landbauforsch Volk 58:91–96

    Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  PubMed  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJ, Inzé D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187(1):132–144

    CAS  PubMed  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3(9):1452–1485

    CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holden NE (2001) History of the origin of the chemical elements and their discoverers. National nuclear data center (NNDC). http://www.nndc.bnl.gov/content/elements. Accessed 12 March 2004

  • Hong-Bo S, Li-Ye C, Ming-An S, Shi-Qing L, Ji-Cheng Y (2008) Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol Adv 26(6):503–510

    PubMed  Google Scholar 

  • Hopkins William G, Hüner Norman PA (2011) Introduction to plant physiology, 4th ed. Wiley, pp 1–528, ISBN:978-0-470-46142-6

    Google Scholar 

  • Housecroft CE, Sharpe AG (2008) Inorganic chemistry, 3rd ed. Prentice Hall, pp 305–306, ISBN:978-0131755536 http://en.wikipedia.org

  • Huang CY, Shirley N, Genc Y, Shi B, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant physiol 156(3):1217–1229

    Google Scholar 

  • Jamal A, Fazli IS, Ahmad S, Abdin MZ, Yun SJ (2005) Effect of sulphur and nitrogen application on growth characteristics, seed and oil yield of soybean cultivars. Korean J Crop Sci 50(5):340–345

    Google Scholar 

  • Jamal A, Fazli IS, Ahmad S, Abdin MZ (2006a) Interactive effect of nitrogen and sulphur on yield and quality of groundnut (Arachis hypogea L.). Korean J Crop Sci 51(6):519–522

    Google Scholar 

  • Jamal A, Fazli IS, Ahmad S, Kim KT, Oh DG, Abdin MZ (2006b) Effect of sulfur on nitrate reductase and ATP sulfurylase activities in groundnut (Arachis hypogea L.). J Plant Biol 49(6):513–517

    CAS  Google Scholar 

  • Jamal A, Fazli IS, Ahmad S, Abdin MZ, Yun SJ (2006c) Effect of nitrogen and sulphur application on nitrate reductase and ATP- sulphurylase activities in soybean. Korean J Crop Sci 51(4):298–302

    Google Scholar 

  • Jamal A, Ko K, Kim HS, Cho YK, Joung H, Ko K (2009) Role of genetic factors and environmental conditions in recombinant protein production for plant molecular biofarming. Biotechnol Adv 27:914–923

    CAS  PubMed  Google Scholar 

  • Jamal A, Moon YS, Abdin MZ (2010a) Enzyme activity assessment of peanut (Arachis hypogea) under slow-release sulphur fertilization. Aus J Crop Sci 4(3):169–174

    CAS  Google Scholar 

  • Jamal A, Moon YS, Abdin MZ (2010b) Sulphur-a general overview and interaction with nitrogen. Aust J Crop Sci 4(7):523–529

    CAS  Google Scholar 

  • Jamieson PD, Semenov MA (2000) Modeling nitrogen uptake and redistribution in wheat. Field Crop Res 68(1):21–29

    Google Scholar 

  • Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Xu G (2011) The phosphate transporter gene OsPht1 is involved in phosphate homeostasis in rice. Plant Physiol 156(3):1164–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JB, Huber DM (2007) Magnesium and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. American Phytopathological Society (APS Press), St Paul, pp 95–100, ISBN-13:978-0890543467

    Google Scholar 

  • Kandi MAS, Tobeh A, Golipouri A, Godehkahriz SJ, Rastgar Z (2012) Concentration changes of lysine and methionine amino acids in potatoes varieties affected by different levels of Nitrogen fertilizer. Tech J Eng Appl Sci 2 (4):93–96

    CAS  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    CAS  PubMed  Google Scholar 

  • Kavanová M, Lattanzi FA, Grimold AA, Schnyder H (2006) Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant physiol 141(2):766–775

    PubMed Central  PubMed  Google Scholar 

  • Kavanova´ M, Grimoldi AA, Lattanzi FA, Schnyder H (2006) Phosphorus nutrition and mycorrhiza effects on grass leaf growth. P status- and size mediated effects on growth zone kinematics. Plant Cell Environ 29:511–520

    PubMed  Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. Methods of soil analysis, part 2, chemical and microbiological properties, Soil Science Society of America Book No 5. 643–698 ISBN-13:978-0891188100

    Google Scholar 

  • Khajuria A, Kanae S (2013) Potential and Use of Nitrate in Agricultural Purposes. J Water Res Prot 5:529–533

    CAS  Google Scholar 

  • Khan TA, Mazid M (2011) Nutritional significance of sulphur in pulse cropping system. Biol Med 3(2):114–133

    CAS  Google Scholar 

  • Khan NA, Samiullah, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agro Crop Sci 193:435–444

    CAS  Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Google Scholar 

  • Krebs RE (2006) The history and use of our earth’s chemical elements: a reference guide. Greenwood Publishing Group 1-376 ISBN-13:978-0313301230

    Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. The Plant Cell Online, 22(3):541–563

    Google Scholar 

  • Leigh RA, Wyn Jones RG (1986) Cellular compartmentation in plant nutrition: The selective cytoplasm and the promiscuous vacuole. Adv Plant Nutr 2:249–279

    Google Scholar 

  • Li M, Guo S, Xu Y, Meng Q, Li G, Yang X (2013) Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plant 150:63–75

    PubMed  Google Scholar 

  • Lidon ZZ, Cebola F (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agr 24(1):57–72

    Google Scholar 

  • Lima PS, Rodrigues VLP, de Medeiros JF, de Aquino BF, da Silva J (2007) Yield and quality of melon fruits as a response to the application of nitrogen and potassium doses. Revista Caatinga 20(2)

    Google Scholar 

  • Lopez-Jurado G, Hannway DB (1985) Sulphur nutrition effects on dinitrogen fixation of seedling alfalfa. J Plant Nutr 8:1103–1121

    CAS  Google Scholar 

  • Losak T, Hlusek J, Filipcik R, Pospisilova L, Manasek J, Prokes K, Orosz F (2010) Effect of nitrogen fertilization on metabolisms of essential and non-essential amino acids in field-grown grain maize (Zea mays L.). Plant Soil Environ 56(12):574–579

    CAS  Google Scholar 

  • Luft FC (2012) Whither magnesium? Clin Kidney J 5(Suppl 1):i1–i2

    Google Scholar 

  • Luminaris M (2005) Phosphorus-from discovery to commodity. Indian J Chem Tech 12:108–122

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd ed. London, Academic, pp 1–889, ISBN:978-0-12-473542-473542

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants, vol 89. Academic, London, pp 1–651, ISBN:9780123849052

    Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd ed. Academic, London, pp 1–672, ISBN-13:978-0123849052

    Google Scholar 

  • Martre P, Porte JR, Jamieson PD, Triboï E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol 133(4):1959–1967

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGrath SP, Zhao FJ (1996) Sulphur uptake, yield response and the interactions between N and S in winter oilseed rape (Brassica napus L.). J Agric Sci 126:53–62

    Google Scholar 

  • Mengel K (2007) Potassium. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor & Francis, Boca Ratan, pp 91–120

    Google Scholar 

  • Mengel K, Kirkby EA (1980) Potassium in crop production. Adv Agron 33:59–110

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, vol 73. International Potash Institute, Bern, pp 588–594, ISBN:3906535037

    Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition, vol 5. Springer Netherlands, pp 1–849

    Google Scholar 

  • Miller AJ, Shen Q, Xu G (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    CAS  PubMed  Google Scholar 

  • Miwa K, Kamiya T, Fujiwara T (2009) Homeostasis of the structurally important micronutrients, B and Si. Curr Opin Plant Biol 12:307–311

    CAS  PubMed  Google Scholar 

  • Momose Y, Iwahashi H (2001) Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ Toxicol Chem 20:2353–2360

    CAS  PubMed  Google Scholar 

  • Morgan JB, Connolly EL (2013) Plant-soil interactions: nutrient uptake. Nat Educ Knowl 4(8):2

    Google Scholar 

  • Morgan SH, Lindberg S, Mühling KH (2013) Calcium supply effects on wheat cultivars differing in salt resistance with special reference to leaf cytosol ion homeostasis. Physiol Plant 149:321–328

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmadb M, Zahir ZA, Javaid A, Ashraf M (2013) The role of mycorrhizae and plant growth promoting rhizobacteria 3 (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. http://dx.doi.org/10.1016/j.biotechadv.2013.12.005

  • Norelli JL, Miller SS (2004) Effect of prohexadione-calcium dose level on shoot growth and fire blight in young apple trees. Plant Dis 88(10):1099–1106

    CAS  Google Scholar 

  • Nursu’aidah H, Motior MR, Nazia AM, Islam MA (2014) Growth and photosynthetic responses of long bean (Vigna unguiculata) and mung bean (Vigna radiata) response to fertilization. J Anim Plant Sci 24(2):573–578

    Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlíková D, Neuberg M, Zizkova E, Motyka V, Pavlík M (2012) Interactions between nitrogen nutrition and phytohormone levels in Festulolium plants. Plant Soil Environ 58:367–372

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133(4):670–681

    CAS  PubMed  Google Scholar 

  • Pfluger R, Mengel K (1972) The photochemical activity of chloroplasts obtained from plants with different potassium nutrition. Plant Soil 36:417–425

    Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    CAS  PubMed  Google Scholar 

  • Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262

    CAS  PubMed  Google Scholar 

  • Plieth C (2005) Calcium: just another regulator in the machinery of life? Ann Bot 96(1):1–8

    CAS  PubMed  Google Scholar 

  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156(3):1190–1201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pootakham W, Gonzalez-BallesterD, Grossman AR (2010) Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas. Plant Physiol 153(4):1653–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puig S, Pen˜arrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12:299–306

    CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    CAS  PubMed  Google Scholar 

  • Ryan J, Estefan G, Rashid A (2001) Soil and plant analysis laboratory manual, Interaction Center for Agricultural Research in the Dry Areas (ICARDA), 2nd ed. Aleppo, Syria, pp 1–18

    Google Scholar 

  • Reddy ASN, Reddy VS, Golovkin M (2000) A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 279:762–769

    CAS  PubMed  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology 150:229–243

    Google Scholar 

  • Rogan GJ, Bookout JT, Duncan DR, Fuchs RL, Lavrik PB, Love SL, Mueth M, Olson T, Owens ED, Raymond PJ, Zalewski J (2000) Compositional analysis of tubers from insect and virus resistant potato plants. J Agric Food Chem 48:5936–5945

    CAS  PubMed  Google Scholar 

  • Rowley S, Cardon G, Black B (2012) Macronutrient management for Utah Orchards. USU Extension Publication Horticulture/Fruit/2012-01pr

    Google Scholar 

  • Ryan PR, Kinraide TB, Kochian LV (1994) Al3+ -Ca2+ interactions in aluminum rhizotoxicity. Planta 192:98–102

    CAS  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2010) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 9:440–448

    Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 7:2180–2198

    Google Scholar 

  • Scherer HW (2009) Sulfur in soils. J Plant Nutr Soil Sci 172:326–335

    CAS  Google Scholar 

  • Seaborg GT (1980) The new elements: much progress has been made in the discovery and understanding of new elements in the last forty years, but there are still opportunities to increase this understanding in the future. Am Sci 68(3):279–289

    CAS  Google Scholar 

  • Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221:56–65

    CAS  PubMed  Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants-mechanisms and adaptations. Tech Publisher, pp 1–428, ISBN 978-953-307-394-1

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Brazilian J Plant Physiol 17(1):35–52

    CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Google Scholar 

  • Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49

    CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. BioMetals 15:309–323

    Google Scholar 

  • Silva IR, Smyth TJ, Carter TE, Rufty TW (2001) Altered aluminum root elongation inhibition in soybean genotypes in the presence of magnesium. Plant Soil 230:223–230

    CAS  Google Scholar 

  • Simpson RJ, Lambers H, Dalling MJ (1983) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.) IV. Development of a quantitative model of the translocation of nitrogen to the grain. Plant Physiol 71(1):7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Street JJ, Kidder G (1997) Soils and Plant nutrition, corporative extension service, vol 8. Institute of Food and Agriculture Sciences, University of Florida. SL, pp 1–4

    Google Scholar 

  • Street, HE, Öpik, H (1970) The physiology of flowering plants: their growth and development. Edward Arnold (Publishers) Ltd

    Google Scholar 

  • Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium-a functional plant nutrient. Crit Rev Plant Sci 22(5):391–416

    Google Scholar 

  • Sugawara K, Singh UP, Kobayashi K, Ogoshi A (1998) Scanning electron microscopical observation and X-ray microanalysis of Erysiphe pisi infected leaves of pea (Pisum sativum L.). Phytopathol Z 146:223–229

    CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith F, Blake-Kalff M, Hawkesford M, Daito K (2000) The role of three functional sulfate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    CAS  PubMed  Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001) Nitrogen-dependent accumulation of cytokinins in root and thetranslocation to leaf: implication of cytokinin species thatinduces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

    CAS  PubMed  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    CAS  PubMed  Google Scholar 

  • Tan K, Keltjens WG, Findenegg GR (1992) Aluminium toxicity with sorghum genotypes in nutrient solutions and its amelioration by magnesium. J Plant Nutr Soil Sci 155:81–86

    CAS  Google Scholar 

  • Tandon HLS (1986) Sulfur research and agricultural production in India 2nd edition. Fertilizer development and consultation organization, New Delhi, p 76

    Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic 108:7–14

    Google Scholar 

  • Thomas CA, Orellana RG (1964) Phenols and pectin in relation to browning and maceration of castor bean capsules by Botrytis. J Phytopathol 50:359–366

    CAS  Google Scholar 

  • Tripathi DK, Kumar R, Chauhan DK, Rai AK, Bicanic D (2011) Laser-induced breakdown spectroscopy for the study of the pattern of silicon deposition in leaves of Saccharum species. Instrum Sci Technol 39(6):510–521

    CAS  Google Scholar 

  • Tripathi DK, Kumar R, Pathak AK, Chauhan DK, Rai AK (2012a) Laser-induced breakdown spectroscopy and phytolith analysis: An approach to study the deposition and distribution pattern of silicon in different parts of Wheat (Triticum aestivum L.). Plant Agric Res 1(4):352–361

    Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012b) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012c) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28(3):281–291

    CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Verma MM, Swarnkar KC (1986) Response of linseed to nitrogen, phosphorous and sulfur application in sandy loam soil. Indian Agric 30:223–228

    Google Scholar 

  • Vidal EA, Gutiérrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11(5): 521-529

    Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Google Scholar 

  • Volk GM, Goss LJ, Franceschi VR (2004) Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Ann Bot 93(6):741–753

    CAS  PubMed  Google Scholar 

  • Wakeel A, Farooq M, Qadir M, Schubert S (2011) Potassium substitution by sodium in plants. Crit Rev Plant Sci 30(4):401–413

    CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244

    Google Scholar 

  • Watanabe T, Okada K (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Ann Bot 95:379–385

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12): 586–593

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • White PJ, Bradshaw JE, Finlay M, Dale B, Ramsay G, Hammond JP, Broadley MR (2009) Relationships between yield and mineral concentrations in potato tubers. Hortic Sci 44(1):6–11

    Google Scholar 

  • Williams JS, Hall SA, Hawkesford MJ, Beale MH, Cooper RM (2002) Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol 128(1):150–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    CAS  PubMed  Google Scholar 

  • Yang TB, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275:38467–38473

    CAS  PubMed  Google Scholar 

  • Yang TB, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    CAS  PubMed  Google Scholar 

  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H +-ATPase activity. Plant Cell Physiol 48:66–73

    CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Jurick WM (2013) Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol Plant 148:445–455

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Evans EJ, Bilsborrow PE, Syers JK (1993) Influence of S and N on seed yield and quality of low glucosinolate oilseed rape (Brassica nepus L.). J Sci Food Agric 63:29–37

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999b) Over expression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    CAS  Google Scholar 

  • Zhu GB, Peng YZ, Wu SY, Ma B, Wang YY (2006) Study on optimal operation of step feed biological nitrogen removal process. China Water Wastewater 22(21): 1–5

    Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates J Food Agri 24(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tripathi, D., Singh, V., Chauhan, D., Prasad, S., Dubey, N. (2014). Role of Macronutrients in Plant Growth and Acclimation: Recent Advances and Future Prospective. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_8

Download citation

Publish with us

Policies and ethics