Skip to main content

Soil Contaminants: Sources, Effects, and Approaches for Remediation

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

The contamination of soils with various inorganic and organic contaminants led to the degradation of large expenses of urban and arable lands throughout the world. The presence of toxic contaminants poses a significant health risk to humans and other ecological systems. Scattered literature is harnessed to critically review the various natural and anthropogenic sources and potential hazards and to identify the best possible remediation strategies for a number of contaminants, mainly those inorganic in nature such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn) commonly found in the contaminated soils. The remediation methods including chemical and phytoremediation techniques are discussed in this chapter. Chemical remediation methods such as immobilization, soil washing, and vitrification are relatively expansive and hazardous to the environment, and are not suitable for large-scale soil remediation activities. Conversely, phytoremediation has emerged as an environmentally friendly and feasible technology for restoration of contaminated soils, but very limited efforts have been directed to demonstrate this technology under field conditions. Remediation of heavy metal-contaminated soils is necessary to reduce the associated risks, make the land resource available for agricultural production, enhance food security, and scale down land tenure problems arising from changes in the land-use pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Seeda M, Zaghloul A, AbdEl-Galil A (2005) The role of cement dust in chemical remediation of sludge treated soil. ASS Univ Bull Environ Res 8:98–105

    Google Scholar 

  • Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40:117–137

    Article  CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril J, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotech 3:55–70

    Article  CAS  Google Scholar 

  • Alpaslan B, Yukselen MA (2002) Remediation of lead contaminated soils by stabilization/solidification. Water Air Soil Pollut 133:253–263

    Article  CAS  Google Scholar 

  • Anderson A, Mitchell P (2003) Treatment of mercury-contaminated soil, mine waste and sludge using silica micro-encapsulation. TMS annual meeting, extraction and processing division, March 2–6, 2003, San Diego, CA, pp 265–274

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem cycles 15:955–966

    Article  CAS  Google Scholar 

  • Artaxo P, Hansson H-C (1995) Size distribution of biogenic aerosol particles from the Amazon Basin. Atmos Environ 29:393–402

    Article  CAS  Google Scholar 

  • Artinano B, Salvador P, Alonso D, Querol X, Alastuey A (2003) Anthropogenic and natural influence on the PM(10) and PM(2.5) aerosol in Madrid (Spain). Analysis of high concentration episodes. Environ Pollut 125:453–465

    Article  CAS  PubMed  Google Scholar 

  • Asante-Duah DK (1996) Managing contaminated sites: problem diagnosis and development of site restoration. Wiley, Chichester

    Google Scholar 

  • Bakand S, Winder C, Hayes A (2007) Comparative in vitro cytotoxicity assessment of selected gaseous compounds in human alveolar epithelial cells. Toxicol Vitro 21:1341–1347

    Article  CAS  Google Scholar 

  • Barter M (1999) Phytoremediation-an overview. J New Engl Water Environ Assoc 33:158–164

    Google Scholar 

  • Basketter DA, Angelini G, Ingber A, Kern PS, Menne T (2003) Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermat 49:1–7

    Article  CAS  Google Scholar 

  • Bera AK, Bera A, Samadrita BR (2005) Impact  of heavy metal pollution in plants. In: Bose B, Hemantaranajan A (eds) Developments in physiology biochemistry and molecular biology of plants, vol 1. New India Publishing Agency, New Delhi, pp 105–124

    Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Bhandari A, Xia K (2005) Hazardous organic chemicals in biosolids recycled as soil amendments. In: Water pollution. Springer Berlin, pp 217–239

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    Article  CAS  Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100

    Article  CAS  Google Scholar 

  • Boulding R (1996) EPA environmental assessment sourcebook. CRC Press, Chelsea

    Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands-using natural processes. Ecol Eng 8:255–269

    Article  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Brunner I, Luster J, Gunthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  PubMed  Google Scholar 

  • Chapman PM, Wang F, Janssen CR, Goulet RR, Kamunde CN (2003) Conducting ecological risk assessments of inorganic metals and metalloids: current status. Hum Ecol Risk Assess 9:641–697

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Cobb GP, Sands K, Waters M, Wixson BG, Dorward-King E (2000) Accumulation of heavy metals by vegetables grown in mine wastes. Environ Toxicol Chem 19:600–607

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, pp 359–375

    Google Scholar 

  • Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70:377–394

    Article  Google Scholar 

  • Desouza M, Pilon-Smits E, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 171–190

    Google Scholar 

  • Di Palma L, Ferrantelli P, Merli C, Biancifiori F (2003) Recovery of EDTA and metal precipitation from soil flushing solutions. J Hazard Mater 103:153–168

    Article  CAS  PubMed  Google Scholar 

  • Dias G, Edwards G (2003) Differentiating natural and anthropogenic sources of metals to the environment. Hum Ecol Risk Assess 9:699–721

    Article  CAS  Google Scholar 

  • Druss DL (2002) Guidelines for design and installation of soil-cement stabilization. Geotech Special Publ 1:527–539

    Google Scholar 

  • Dushenkov V, Kumar PN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997) Phytoremediation: a novel approach to an old problem. Stud Environ Sci 66:563–572

    Article  CAS  Google Scholar 

  • Ebbs S, Lasat M, Brady D, Cornish J, Gordon R, Kochian L (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    Article  CAS  Google Scholar 

  • Elinder CG, Kjellström T, Lind B, Linnman L, Piscator M, Sundstedt K (1983) Cadmium exposure from smoking cigarettes: variations with time and country where purchased. Environ Res 32:220–227

    Article  CAS  PubMed  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J soil contam 7:415–432

    Google Scholar 

  • Galażyn-Sidorczuk M, Brzoska MM, Moniuszko-Jakoniuk J (2008) Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environ Monit Assess 137:481–493

    Article  PubMed  Google Scholar 

  • Garrett RG (2000) Natural sources of metals to the environment. Hum Ecol Risk Assess 6:945–963

    Article  CAS  Google Scholar 

  • Gerardi MH, Zimmerman MC (2004) Wastewater pathogens. Wiley.com

    Google Scholar 

  • Ghafoor A, Murtaza G, Ahmad B, Boers TM (2008a) Evaluation of amelioration treatments and economic aspects of using saline-sodic water for rice and wheat production on salt-affected soils under arid land conditions. Irrig Drain 57:424–434

    Article  Google Scholar 

  • Ghafoor A, Rehman MZ, Ghafoor A, Murtaza G, Sabir M (2008b) Fractionation and availability of cadmium to wheat as affected by inorganic amendments. Int J Agr Biol 10:469–474

    CAS  Google Scholar 

  • Ghafoor A, Murtaza G, Rehman MZ, Sabir M, Ahmad HR, Saifullah (2012) Environment pollution: types, sources & management. Allied Book Centre, Lahore

    Google Scholar 

  • Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Haynes R, Murtaza G, Naidu R (2009) Inorganic and organic constituents and contaminants of biosolids: implications for land application. Adv Agron 104:165–267

    Article  CAS  Google Scholar 

  • Heaton AC, Rugh CL, Wang N-j, Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J soil contam 7:497–509

    Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Can 3:733–744

    Article  CAS  Google Scholar 

  • Ikem A, Campbell M, Nyirakabibi I, Garth J (2008) Baseline concentrations of trace elements in residential soils from Southeastern Missouri. Environ Monit Assess 140:69–81

    Article  CAS  PubMed  Google Scholar 

  • Jacobs LW, O’Connor G, Overcash M, Zabik M, Rygiewicz P (1987) Effects of trace organics in sewage sludges on soil-plant systems and assessing their risk to humans. Lewis, Chelsea

    Google Scholar 

  • Jadia CD, Fulekar M (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 11:664–691

    Google Scholar 

  • Jamal A, McKenzie K, Clark M (2009) The impact of health information technology on the quality of medical and health care: a systematic review. HIM J 38:26–37

    PubMed  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Juhasz AL, Smith E, Smith J, Naidu R (2003) In situ remediation of DDT-contaminated soil using a two-phase cosolvent flushing-fungal biosorption process. Water Air Soil Pollut 147:263–274

    Article  CAS  Google Scholar 

  • Kamal M, Ghaly A, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Guenther A, Yokelson RJ, Greenberg J, Potosnak M, Blake DR, Artaxo P (2007) The tropical forest and fire emissions experiment: emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J Geophys Res 112:D18302. doi:10.1029/2007JD008539

    Article  Google Scholar 

  • Kasprzak KS, Sunderman FW Jr, Salnikow K (2003) Nickel carcinogenesis. Mutat Res-Fund Mol M 533:67–97

    Article  CAS  Google Scholar 

  • Kertulis-Tartar G, Ma L, Tu C, Chirenje T (2006) Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study. Int J Phytoremediat 8:311–322

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    Article  PubMed  Google Scholar 

  • Krogmann U, Boyles LS, Bamka WJ, Chaiprapat S, Martel CJ (1999) Biosolids and sludge management. Water Environ Res 71:692–714

    Article  CAS  Google Scholar 

  • Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Lewis B, Johnson C, Delwiche C (1966) Release of volatile selenium compounds by plants. Collection procedures and preliminary observations. J Agric Food Chem 14:638–640

    Article  CAS  Google Scholar 

  • Logsdon S, Keller K, Moorman T (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ma C-J, Kasahara M, Höller R, Kamiya T (2001) Characteristics of single particles sampled in Japan during the Asian dust-storm period. Atmos Environ 35:2707–2714

    Article  CAS  Google Scholar 

  • Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464

    Article  CAS  PubMed  Google Scholar 

  • Magaye R, Zhao J (2012) Recent progress in studies of metallic nickel & nickel-based nanoparticles’ genotoxicity and carcinogenicity. Environ Toxicol Pharmacol 34(3):644–650

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  PubMed  Google Scholar 

  • McGrath S, Zhao J, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • Meza-Figueroa D, Maier RM (2009) The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere 77:140–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Murtaza G, Ghafoor A, Qadir M, Owens G, Aziz M, Zia M (2010) Disposal and use of sewage on agricultural lands in Pakistan: a review. Pedosphere 20:23–34

    Article  CAS  Google Scholar 

  • Murtaza G, Haynes RJ, Naidu R, Belyaeva ON, Kim K-R, Lamb DT, Bolan NS (2011) Natural attenuation of Zn, Cu, Pb and Cd in three biosolids-amended soils of contrasting pH measured using rhizon pore water samplers. Water Air Soil Pollut 221:351–363

    Article  CAS  Google Scholar 

  • Neumann M, Schulz R, Schäfer K, Müller W, Mannheller W, Liess M (2002) The significance of entry routes as point and non-point sources of pesticides in small streams. Water Res 36:835–842

    Article  CAS  PubMed  Google Scholar 

  • Niazi NK, Singh B, Shah P (2011a) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2011b) Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Int J Phytoremed 13:912–932

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19:3506–3515

    Article  CAS  Google Scholar 

  • Nogawa K, Kobayashi E, Okubo Y, Suwazono Y (2004) Environmental cadmium exposure, adverse effects and preventive measures in Japan. BioMetals 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Nyer EK (2010) In situ treatment technology. CRC Press, Florida

    Google Scholar 

  • Otterpohl R (2002) Options for alternative types of sewerage and treatment systems directed to improvement of the overall performance. Water Sci Technol 45:149–158

    CAS  PubMed  Google Scholar 

  • Panwar B, Marton L, Kadar I, Anton A, Nemeth T (2010) Phytoremediation: a novel green technology to restore soil health. Acta Agron Hung 58:443–458

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Raag (2000) Evaluation of Risk Based Corrective Action Model, Remediation Alternative Assessment Group, Memorial University of Newfoundland, St John’s, NF, Canada

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • Rogers HR (1996) Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185:3–26

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL (2001) Mercury detoxification with transgenic plants and other biotechnological breakthroughs for phytoremediation in vitro cell development. Biol-Plant 37:321–325

    CAS  Google Scholar 

  • Sabir M, Ghafoor A, Saifullah, Rehman M, Murtaza G (2008) Effect of organic amendments and incubation time on extractability of Ni and other metals from contaminated soils. Pak J Agric Sci 45:18–24

    Google Scholar 

  • Saifullah, Zia MH, Meers E, Ghafoor A, Murtaza G, Sabir M, Zia-ur-Rehman M, Tack F (2010) Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 79:652–658

    Article  PubMed  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 133–150

    Google Scholar 

  • Sherwood LJ, Qualls RG (2001) Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ Sci Technol 35:4126–4131

    Article  CAS  PubMed  Google Scholar 

  • Silva WS, Lapis AA, Suarez PA, Neto BA (2011) Enzyme-mediated epoxidation of methyl oleate supported by imidazolium-based ionic liquids. J Mol Catal B-Enzym 68:98–103

    Article  CAS  Google Scholar 

  • Singh J, Upadhyay SK, Pathak RK, Gupta V (2011) Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicol Environ Chem 93:462–473

    Article  CAS  Google Scholar 

  • Sinha RK, Valani D, Sinha S, Singh S, Herat S (2010) bioremediation of contaminated sites: a low-cost nature’s biotechnology for environmental clean up by versatile microbes, plants & earthworms. In: Faerber T, Herzog J (eds) Solid waste management and environmental remediation. Nova Science, USA, pp 1–72

    Google Scholar 

  • Smith S (2000) Are controls on organic contaminants necessary to protect the environment when sewage sludge is used in agriculture? Prog Environ Sci 2:129–146

    CAS  Google Scholar 

  • Son A-J, Shin K-H, Lee J-U, Kim K-W (2003) Chemical and ecotoxicity assessment of PAH-contaminated soils remediated by enhanced soil flushing. Environ Eng Sci 20:197–206

    Article  CAS  Google Scholar 

  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury in tobacco subjected to different exposure routes. Environ Toxicol Chem 14:61–67

    Article  CAS  Google Scholar 

  • Suthersan SS, Payne FC (2004) In situ remediation engineering. CRC Press, Florida

    Google Scholar 

  • Tagmount A, Berken A, Terry N (2002) An essential role of S-Adenosyl-l-Methionine: l-MethionineS-Methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to Selenium-Methyl-l-Selenium-Methionine, the precursor of volatile selenium. Plant Physiol 130:847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavares-Dias M (2006) A morphological and cytochemical study of erythrocytes, thrombocytes and leukocytes in four freshwater teleosts. J Fish Biol 68:1822–1833

    Article  Google Scholar 

  • Terry N, Carlson C, Raab T, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Thyssen JP, Menni T (2009) Metal Allergyî: a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol 23:309–318

    Article  Google Scholar 

  • Trapp S, Larsen M, Pirandello A, Danquah-Boakye J (2003) Feasibility of cyanide elimination using plants. Eur J Mineral Proc Environ Prot 3:128–137

    Google Scholar 

  • Vallack HW, Bakker DJ, Brandt I, Brostrom-Lunden E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B (1998) Controlling persistent organic pollutants-what next? Environ Toxicol Pharmacol 6:143–175

    Article  CAS  PubMed  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  CAS  PubMed  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Verma P, George K, Singh H, Singh S, Juwarkar A, Singh R (2006) Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ Model Assess 11:387–394

    Article  Google Scholar 

  • Vouillamoz J, Milke M (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295

    CAS  PubMed  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commericialization. Environ Sci Technol 31:182A–186A

    Article  CAS  PubMed  Google Scholar 

  • Weissermel K (2008) Industrial organic chemistry. Wiley.com

    Google Scholar 

  • Wilk C (2003) Solidification/stabilization treatment: principles and practice. Air and Waste Management Association’s Magazine for Environmental Managers July, 31–37

    Google Scholar 

  • Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:6445–6458

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao JS, Ward OP, Lubicki P, Cross JD, Huck P (2001) Process for degradation of nitrobenzene: combining electron beam irradiation with biotransformation. Biotechnol Bioeng 73:306–312

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zayed A, Qian J, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

  • Zychlinsky A, Sansonetti P (1997) Perspectives series: host/pathogen interactions. Apoptosis in bacterial pathogenesis. J Clin Invest 100:493–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Murtaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murtaza, G., Murtaza, B., Niazi, N., Sabir, M. (2014). Soil Contaminants: Sources, Effects, and Approaches for Remediation. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_7

Download citation

Publish with us

Policies and ethics