Skip to main content

Insulin-Like Growth Factor-1 Receptors in Head and Neck Cancer

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The insulin-like growth factor 1 receptor (IGF-1R) has emerged as a significant contributor to the progression and metastatic spread of a number of cancers, including head and neck cancer (HNC). The receptor is most frequently overexpressed in cancer cells, with no evidence of activating mutations to date. Because this receptor exhibits robust activation of PI3K/Akt leading to mTOR activation and anti-apoptotic signaling, it has the capability of enhancing the tumorigenic signaling of other growth factors and cytokines. It is this property of the IGF-1R that has led to its becoming a viable target for cancer therapeutic strategies. In HNC, the IGF-1R has been shown to be involved in the activation of multiple signaling pathways and to be responsible, in part, for some cases of acquired resistance to chemotherapeutics. In this chapter, the role of the IGF-1R and the components of this system will be discussed and their roles in HNC will be evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

COX-2:

Cyclooxygenase-2

CCL5:

C-C motif ligand 5

CCR5:

C-C motif receptor 5

DOCK3:

Dedicator of cytokinesis 3

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

EP2/EP4:

Prostaglandin E2/E4 receptor

Erk:

Extracellular signal-regulated kinase

FFPE:

Formalin-fixed, paraffin-embedded

GEF:

Guanine nucleotide exchange factor

GPCR:

G-protein coupled receptor

HB-EGF:

Heparin-binding-epidermal growth factor

HIF:

Hypoxia-inducible factor

HNC:

Head and neck cancer

HNSCC:

Head and neck squamous cell carcinoma

HuR:

Human antigen R

IGF-1:

Insulin-like growth factor-1

IGF-1R:

Insulin-like growth factor-1 receptor

IGFBP:

Insulin-like growth factor binding protein

IRS:

Insulin receptor substrate

IR:

Insulin receptor

kDa:

kilodaltons

M6P:

Mannose-6-phosphate

MAPK:

Mitogen-activated protein kinase

miR:

microRNA

MMP:

Matrix metalloproteinase

mTORC1:

mammalian target of rapamycin complex 1

NEDD9:

Neural precursor cell expressed, developmentally down-regulated 9

PAK1:

p21 activated kinase 1

PI 3K:

PhosphatidylinositoI 3-kinase

Ptdins-4,5 P2:

PhosphatidylinositoI-4,5 bisphosphate

Ptdins-3,4,5 P3:

PhosphatidylinositoI-3,4,5 trisphosphate

PDK-1:

Phosphoinositide-dependent kinase-1

PH:

Pleckstrin homology

PTB:

Phosphotyrosine binding

Rac1:

Ras-related C3 botulinum toxin substrate 1

RhoA:

Ras homolog gene family, member A

ROCK:

Rho-associated, coiled-coil containing protein kinase

RPE:

Retinal pigment epithelium

RTK:

Receptor tyrosine kinase

RTKI:

Receptor tyrosine kinase inhibitor

SH2:

Src homology 2

Shc:

Src homology and collagen containing

S1PR:

Sphingosine-1-phosphate receptor

TGF-β:

Transforming growth factor-β

TKI:

Tyrosine kinase inhibitor

VEGF:

Vascular endothelial growth factor

References

  1. Ahmad T, Farnie G, Bundred NJ, Anderson NG. The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem. 2004;279:1713–9.

    Article  PubMed  CAS  Google Scholar 

  2. Alberobello AT, D’Esposito V, Marasco D, Doti N, Ruvo M, Bianco R, et al. Selective disruption of insulin-like growth factor-1 (IGF-1) signaling via phosphoinositide-dependent kinase-1 prevents the protective effect of IGF-1 on human cancer cell death. J Biol Chem. 2010;285:6563–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res. 2003;63:5230–3.

    PubMed  CAS  Google Scholar 

  4. Barnes CJ, Ohshiro K, Rayala SK, El-Naggar AK, Kumar R. Insulin-like growth factor receptor as a therapeutic target in head and neck cancer. Clin Cancer Res. 2007;13:4291–9.

    Article  PubMed  CAS  Google Scholar 

  5. Baserga R. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res. 1995;55:249–52.

    PubMed  CAS  Google Scholar 

  6. Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B. The IGF-I receptor in cell growth, transformation and apoptosis. Biochimica et Biophysica Acta. 1997;1332:F105–26.

    Google Scholar 

  7. Baserga R. Customizing the targeting of IGF-1 receptor. Future Oncol. 2009a;5:43–50.

    Article  CAS  Google Scholar 

  8. Baserga R. The insulin receptor substrate-1: a biomarker for cancer? Exp Cell Res. 2009b;315:727–32.

    Article  CAS  Google Scholar 

  9. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586–623.

    Article  PubMed  CAS  Google Scholar 

  10. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.

    Article  PubMed  CAS  Google Scholar 

  11. Burgaud JL, Baserga R. Intracellular transactivation of the insulin-like growth factor I receptor by an epidermal growth factor receptor. Exp Cell Res. 1996;223:412–19.

    Article  PubMed  CAS  Google Scholar 

  12. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91.

    Article  PubMed  CAS  Google Scholar 

  13. Canto M, Devesa SS. Oral cavity and pharynx cancer incidence rates in the United States. Oral Oncol. 2002;38:610–17.

    Article  PubMed  Google Scholar 

  14. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998;279:563–6.

    Article  PubMed  CAS  Google Scholar 

  15. Chang YS, Wang L, Suh YA, Mao L, Karpen SJ, Khuri FR, et al. Mechanisms underlying lack of insulin-like growth factor-binding protein-3 expression in non-small-cell lung cancer. Oncogene. 2004;23:6569–80.

    Article  PubMed  CAS  Google Scholar 

  16. Christofori G, Naik P, Hanahan D. Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis. Nat Genet. 1995;10:196–201.

    Article  PubMed  CAS  Google Scholar 

  17. Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discovery. 2007;6:821–33.

    Article  CAS  Google Scholar 

  18. Croasdale R, Wartha K, Schanzer JM, Kuenkele KP, Ries C, Mayer K, et al. Development of tetravalent IgG1 dual targeting IGF-1R-EGFR antibodies with potent tumor inhibition. Arch Biochem Biophys. 2012;526:206–18.

    Article  PubMed  CAS  Google Scholar 

  19. Davies DE, Chamberlin SG. Targeting the epidermal growth factor receptor for therapy of carcinomas. Biochem Pharmacol. 1996;51:1101–10.

    Article  PubMed  CAS  Google Scholar 

  20. De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769–83.

    Article  PubMed  CAS  Google Scholar 

  21. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991;64:849–59.

    Article  PubMed  CAS  Google Scholar 

  22. Djiogue S, Nwabo Kamdje AH, Vecchio L, Kipanyula MJ, Farahna M, Aldebasi YH, et al. Insulin resistance and cancer: the role of insulin and insulin-like growth factors. Endocr Relat Cancer. 2013;20:R1–R17.

    Google Scholar 

  23. Dolgin E. Drug companies look to biomarkers to salvage cancer target. Nat Med. 2012;18:1312–13.

    Article  PubMed  CAS  Google Scholar 

  24. El-Shewy HM, Johnson KR, Lee M-H, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by transactivating sphingosine 1-phosphate receptors. J Biol Chem. 2006;281:31399–407.

    Article  PubMed  CAS  Google Scholar 

  25. Endogenous H, Breast Cancer Collaborative Group. Key TJ, Appleby PN, Reeves GK, Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11:530–42.

    Article  CAS  Google Scholar 

  26. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev. 2002;23:824–54.

    Article  PubMed  CAS  Google Scholar 

  27. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278–88.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Friedrich RE, Hagel C, Bartel-Friedrich S. Insulin-like growth factor-1 receptor (IGF-1R) in primary and metastatic undifferentiated carcinoma of the head and neck: a possible target of immunotherapy. Anticancer Res. 2010;30:1641–43.

    PubMed  Google Scholar 

  29. Fung C, Grandis JR. Emerging drugs to treat squamous cell carcinomas of the head and neck. Expert Opin Emerg Drugs. 2010;15:355–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5:231–9.

    Article  PubMed  CAS  Google Scholar 

  31. Gimona M, Buccione R, Courtneidge SA, Linder S. Assembly and biological role of podosomes and invadopodia. Curr Op Cell Biol. 2008;20:235–41.

    Article  PubMed  CAS  Google Scholar 

  32. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21.

    Article  PubMed  Google Scholar 

  33. Grandis JR, Chakraborty A, Zeng Q, Melhem MF, Tweardy DJ. Downmodulation of TGF-alpha protein expression with antisense oligonucleotides inhibits proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. J Cell Biochem. 1998;69:55–62.

    Article  PubMed  CAS  Google Scholar 

  34. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998;351:1393–6.

    Article  PubMed  CAS  Google Scholar 

  35. Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab. 2010;11:11–22.

    Article  PubMed  CAS  Google Scholar 

  36. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A. 2001;98:5804–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Hemers E, Duval C, McCaig C, Handley M, Dockray GJ, Varro A. Insulin-Like Growth Factor Binding Protein-5 Is a Target of Matrix Metalloproteinase-7: Implications for Epithelial-Mesenchymal Signaling. Cancer Res. 2005a;65:7363–9.

    Article  CAS  Google Scholar 

  38. Hemers E, Duval C, McCaig C, Handley M, Dockray GJ, Varro A. Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithelial-mesenchymal signaling. Cancer Res. 2005b;65:7363–9.

    Article  CAS  Google Scholar 

  39. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  40. Hofmann F, Garcia-Echeverria C. Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov Today. 2005;10:1041–7.

    Article  PubMed  CAS  Google Scholar 

  41. Hung PS, Kao SY, Shih YH, Chiou SH, Liu CJ, Chang KW, et al. Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J Pathol. 2008;214:368–76.

    Article  PubMed  CAS  Google Scholar 

  42. Jameson MJ, Beckler AD, Taniguchi LE, Allak A, Vanwagner LB, Lee NG, et al. Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther. 2011;10:2124–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J. 2010a;432:199–205.

    Article  CAS  Google Scholar 

  44. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010b;127:505–12.

    Article  CAS  Google Scholar 

  45. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.

    Article  PubMed  CAS  Google Scholar 

  46. Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14:659–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kibbey MM, Jameson MJ, Eaton EM, Rosenzweig SA. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol Pharmacol. 2006;69:833–45.

    PubMed  CAS  Google Scholar 

  48. Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006;125:1269–81.

    Article  PubMed  CAS  Google Scholar 

  49. Knowlden JM, Hutcheson IR, Barrow D, Gee JMW, Nicholson RI. Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology. 2005;146:4609–18.

    Article  PubMed  CAS  Google Scholar 

  50. Kuribayashi A, Kataoka K, Kurabayashi T, Miura M. Evidence that basal activity, but not transactivation, of the epidermal growth factor receptor tyrosine kinase is required for insulin-like growth factor I-induced activation of extracellular signal-regulated kinase in oral carcinoma cells. Endocrinology. 2004;145:4976–84.

    Article  PubMed  CAS  Google Scholar 

  51. Law PT, Ching AK, Chan AW, Wong QW, Wong CK, To KF, et al. MiR-145 modulates multiple components of the insulin-like growth factor pathway in hepatocellular carcinoma. Carcinogenesis. 2012;33:1134–41.

    Article  PubMed  CAS  Google Scholar 

  52. Levy-Toledano R, Blaettler DH, LaRochelle WJ, Taylor SI. Insulin-induced activation of phosphatidylinositol (PI) 3-kinase. Insulin-induced phosphorylation of insulin receptors and insulin receptor substrate-1 displaces phosphorylated platelet-derived growth factor receptors from binding sites on PI 3-kinase. J Biol Chem. 1995;270:30018–22.

    Article  PubMed  CAS  Google Scholar 

  53. Li S, Wang N, Brodt P. Metastatic cells can escape the proapoptotic effects of TNF-alpha through increased autocrine IL-6/STAT3 signaling. Cancer Res. 2012;72:865–75.

    Article  PubMed  CAS  Google Scholar 

  54. Liu X, Chen Z, Yu J, Xia J, Zhou X. MicroRNA profiling and head and neck cancer. Comp Funct Genomics. vol. 2009, Article ID 837514, 11 pages, 2009. doi:10.1155/2009/837514

    Google Scholar 

  55. Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics. 2009b;6:131–9.

    CAS  Google Scholar 

  56. Lopez T, Hanahan D. Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell. 2002;1:339–53.

    Article  PubMed  CAS  Google Scholar 

  57. Loudig O, Brandwein-Gensler M, Kim RS, Lin J, Isayeva T, Liu C, et al. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma. Hum Pathol. 2011;42:1911–22.

    Article  PubMed  CAS  Google Scholar 

  58. Lucas JT Jr, Salimath BP, Slomiany MG, Rosenzweig SA. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 2010;29:4449–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Ma J, Pollak M, Giovannucc iE, Chan J, Tao Y, Hennekens C, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-1 and IGF-binding protein-3. J Natl Cancer Inst. 1999;91:620–5.

    Article  PubMed  CAS  Google Scholar 

  61. Matsumoto F, Valdecanas DN, Mason KA, Milas L, Ang KK, Raju U. The Impact of Timing of EGFR and IGF-1R Inhibition for Sensitizing Head and Neck Cancer to Radiation. Anticancer Res. 2012;32:3029–35.

    PubMed  CAS  Google Scholar 

  62. Matuschek C, Rudoy M, Peiper M, Gerber PA, Hoff NP, Buhren BA, et al. Do insulin-like growth factor associated proteins qualify as a tumor marker? Results of a prospective study in 163 cancer patients. Eur J Med Res. 2011;16:451–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Mira E, Lacalle RA, Gonzalez MA, Gomez-Mouton C, Abad JL, Bernad A, et al. A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep. 2001;2:151–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Natarajan M, Stewart JE, Golemis EA, Pugacheva EN, Alexandropoulos K, Cox BD, et al. HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene. 2006;25:1721–32.

    Article  PubMed  CAS  Google Scholar 

  65. Novosyadlyy R, Vijayakumar A, Lann D, Fierz Y, Kurshan N, LeRoith D. Physical and functional interaction between polyoma virus middle T antigen and insulin and IGF-I receptors is required for oncogene activation and tumour initiation. Oncogene. 2009;28:3477–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002;277:39684–95.

    Article  PubMed  CAS  Google Scholar 

  67. Papadimitrakopoulou VA, Brown EN, Liu DD, El-Naggar AK, Jack Lee J, Hong WK, et al. The prognostic role of loss of insulin-like growth factor-binding protein-3 expression in head and neck carcinogenesis. Cancer Lett. 2006;239:136.

    Article  PubMed  CAS  Google Scholar 

  68. Pollak M. Targeting insulin and insulin-like growth factor signalling in oncology. Curr Opin Pharmacol. 2008a;8:384–92.

    Article  CAS  Google Scholar 

  69. Pollak M. Targeting insulin and insulin-like growth factor signalling in oncology. Curr Opin Pharmacol. 2008b;8:384–92.

    Article  CAS  Google Scholar 

  70. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12:159–69.

    PubMed  CAS  Google Scholar 

  71. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505–18.

    Article  PubMed  CAS  Google Scholar 

  72. Punglia R, Lu M, Hsu J, Kuroki M, Tolentino J, Keough K, et al. Regulation of VEGF expression by IGF-1. Diabetes. 1997;46:1619–26.

    Article  PubMed  CAS  Google Scholar 

  73. Robinson SA, Rosenzweig SA. Synthesis and characterization of biotinylated forms of insulin-like growth factor-1: topographical evaluation of the IGF-1/IGFBP-2 AND IGFBP-3 interface. Biochemistry. 2004;43:11533–45.

    Article  PubMed  CAS  Google Scholar 

  74. Robinson SA, Rosenzweig SA. Paradoxical effects of the phage display-derived peptide antagonist IGF-F1-1 on insulin-like growth factor-1 receptor signaling. Biochem Pharmacol. 2006;72:53–61.

    Article  PubMed  CAS  Google Scholar 

  75. Rosenzweig SA. What’s new in the IGF-binding proteins? Growth Horm IGF Res. 2004;14:329–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Rosenzweig SA, Atreya HS. Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol. 2010;80:1115–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem. 2000;275:22583–9.

    Article  PubMed  CAS  Google Scholar 

  78. Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther. 2007;6:1–12.

    Article  PubMed  CAS  Google Scholar 

  79. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183–232.

    Article  PubMed  CAS  Google Scholar 

  80. Schmitz S, Kaminsky-Forrett MC, Henry S, Zanetta S, Geoffrois L, Bompas E, et al. Phase II study of figitumumab in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck: clinical activity and molecular response (GORTEC 2008-02). Ann Oncol. 2012;23:2153–61.

    Article  PubMed  CAS  Google Scholar 

  81. Sciacca L, Prisco M, Wu A, Belfiore A, Vigneri R, Baserga R. Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D cells in the presence or absence of IR substrate-1. Endocrinology. 2003;144:2650–8.

    Article  PubMed  CAS  Google Scholar 

  82. Sell C, Rubini M, Rubin R, Liu J, Efstratiadis A, Baserga R. Simian Virus 40 Large Tumor Antigen is Unable to Transform Mouse Embryonic Fibroblasts Lacking Type 1 Insulin-Like Growth Factor Receptor. Proc Natl Acad Sci USA. 1993;90:11217–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Shaw LM. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the {alpha}6{beta}4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol Cell Biol. 2001;21:5082–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84:320–30.

    Article  PubMed  CAS  Google Scholar 

  85. Shin DH, Min HY, El-Naggar AK, Lippman SM, Glisson B, Lee HY. Akt/mTOR counteract the antitumor activities of cixutumumab, an anti-insulin-like growth factor I receptor monoclonal antibody. Mol Cancer Ther. 2011;10:2437–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Shpitzer T, Bahar G, Feinmesser R, Nagler RM. A comprehensive salivary analysis for oral cancer diagnosis. J Cancer Res Clin Oncol. 2007;133:613–7.

    Article  PubMed  CAS  Google Scholar 

  87. Slomiany MG, Rosenzweig SA. Hypoxia-inducible factor-1-dependent and -independent regulation of insulin-like growth factor-1-stimulated vascular endothelial growth factor secretion. J Pharmacol Exp Ther. 2006;318:666–75.

    Article  PubMed  CAS  Google Scholar 

  88. Slomiany MG, Black LA, Kibbey MM, Day TA, Rosenzweig SA. IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun. 2006;342:851–8.

    Article  PubMed  CAS  Google Scholar 

  89. Slomiany MG, Black LA, Kibbey MM, Tingler MA, Day TA, Rosenzweig SA. Insulin-like growth factor-1 receptor and ligand targeting in head and neck squamous cell carcinoma. Cancer Lett. 2007;248:269–79.

    Article  PubMed  CAS  Google Scholar 

  90. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, et al. Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med. 1999;5:1390–5.

    Article  PubMed  CAS  Google Scholar 

  91. Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci U S A. 2004;101:2076–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Stoica A, Saceda M, Fakhro A, Joyner M, Martin MB. Role of insulin-like growth factor-I in regulating estrogen receptor-alpha gene expression. J Cell Biochem. 2000;76:605–14.

    Article  PubMed  CAS  Google Scholar 

  93. Strnad H, Lacina L, Kolar M, Cada Z, Vlcek C, Dvorankova B, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol. 2010;133:201–11.

    Article  PubMed  CAS  Google Scholar 

  94. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L, et al. mTORC1 inhibition activates PI3K/Akt by up-regulating IGF-1R signaling in acute myeloid leukemia: rational for therapeutic inhibition of both pathways. Blood. 2008;111:379–82.

    Google Scholar 

  95. Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Clin Pract Oncol. 2007;4:591–602.

    Article  PubMed  CAS  Google Scholar 

  96. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci. 2010;67:1025–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Ueda S, Tsuda H, Sato K, Takeuchi H, Shigekawa T, Matsubara O, et al. Alternative tyrosine phosphorylation of signaling kinases according to hormone receptor status in breast cancer overexpressing the insulin-like growth factor receptor type 1. Cancer Sci. 2006;97:597–604.

    Article  PubMed  CAS  Google Scholar 

  98. Weber A, Hengge UR, Stricker I, Tischoff I, Markwart A, Anhalt K, et al. Protein microarrays for the detection of biomarkers in head and neck squamous cell carcinomas. Hum Pathol. 2007;38:228–38.

    Article  PubMed  CAS  Google Scholar 

  99. Weroha SJ, Haluska P. IGF-1 receptor inhibitors in clinical trials—early lessons. J Mammary Gland Biol Neoplasia. 2008;13:471–83.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, et al. IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes. 2007;56:285–94.

    Article  PubMed  CAS  Google Scholar 

  101. Whittaker J, Whittaker LJ, Roberts CT, Jr., Phillips NB, Ismail-Beigi F, Lawrence MC, et al. alpha-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci U S A. 2012;109:11166–71.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Wirth LJ, Haddad RI, Lindeman NI, Zhao X, Lee JC, Joshi VA, et al. Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:6976–81.

    Article  PubMed  CAS  Google Scholar 

  103. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res. 2008;14:2588–92.

    Article  PubMed  CAS  Google Scholar 

  104. Wu X, Zhao H, Do K-A, Johnson MM, Dong Q, Hong WK, et al. Serum levels of insulin growth factor (IGF-I) and IGF-binding protein predict risk of second primary tumors in patients with head and neck cancer. Clin Cancer Res. 2004a;10:3988–95.

    Article  CAS  Google Scholar 

  105. Wu X, Zhao H, Do KA, Johnson MM, Dong Q, Hong WK, et al. Serum levels of insulin growth factor (IGF-I) and IGF-binding protein predict risk of second primary tumors in patients with head and neck cancer. Clin Cancer Res. 2004b;10:3988–95. (an official journal of the American Association for Cancer Research).

    Article  CAS  Google Scholar 

  106. Yang Y, Yee D. Targeting insulin and insulin-like growth factor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2012;17:251–61.

    Article  PubMed Central  PubMed  Google Scholar 

  107. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X. Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst. 1999;91:151–6.

    Article  PubMed  CAS  Google Scholar 

  108. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276:1268–72.

    Article  PubMed  CAS  Google Scholar 

  109. Zhang Q, Thomas SM, Lui VWY, Xi S, Siegfried JM, Fan H, et al. Phosphorylation of TNF-{alpha} converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc Natl Acad Sci. 2006;103:6901–06.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01CA134845 (SAR), NIH/NCRR UL1 TR000062/TL1 TR000061 from the South Carolina Clinical & Translational Research Institute (COH) and NIH P30CA138313 awarded to Hollings Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Rosenzweig PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenzweig, S., Holmes, C. (2014). Insulin-Like Growth Factor-1 Receptors in Head and Neck Cancer. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8815-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8815-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8814-9

  • Online ISBN: 978-1-4614-8815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics