Skip to main content

Projections: Novel Therapies for HPV-Negative Cancers of the Head and Neck

  • Chapter
  • First Online:
  • 930 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Outcomes for patients with locally advanced head and neck cancer that is not associated with human papillomavirus (HPV) have not improved substantially despite intensification of therapy and advances in surgical and radiation technique. Differences in biomolecular profile between HPV-associated and non-associated cancers provide a potential set of molecular targets for novel therapies in HPV-negative head and neck cancer. These include ERBB/HER family members, the tyrosine kinase growth factor receptor c-Met, and signaling intermediaries such as Aurora A kinase, Hedgehog, phosphoinositide 3-kinase (PI3K), and mTOR. Immune suppression has been identified in HPV-negative larynx cancers, opening up the promise of CTLA-4 and PD-1 inhibitors for head and neck cancer. Current trials are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jin L, et al. Genetic variants in p53-related genes confer susceptibility to second primary malignancy in patients with index squamous cell carcinoma of head and neck. Carcinogenesis. 2013;34:1551–7.

    Article  CAS  PubMed  Google Scholar 

  2. Goldenberg D, et al. Habitual risk factors for head and neck cancer. Otolaryngol Head Neck Surg. 2004;131:986–93.

    Article  PubMed  Google Scholar 

  3. Goldenberg D, et al. The beverage maté: a risk factor for cancer of the head and neck. Head Neck. 2003;25:595–601.

    Article  PubMed  Google Scholar 

  4. Schwartz SM, et al. Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst. 1998;90:1626–36.

    Article  CAS  PubMed  Google Scholar 

  5. Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Westra WH, et al. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2008;14:366–9.

    Article  CAS  PubMed  Google Scholar 

  7. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Poeta ML, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lindenbergh-van der Plas M. Prognostic significance of truncating TP53 mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17:3733–41.

    Article  CAS  PubMed  Google Scholar 

  11. Herzog A, et al. PI3K/mTOR Inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res. 2013;19:3808–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Pignon JP, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92:4–14.

    Article  PubMed  Google Scholar 

  13. Vermorken JB, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007;357:1695–704.

    Article  CAS  PubMed  Google Scholar 

  14. Posner MR, et al. Cisplatin and Fluorouracil Alone or with Docetaxel in Head and Neck Cancer. N Engl J Med. 2007;357:1705–15.

    Article  CAS  PubMed  Google Scholar 

  15. Posner MR, et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann Oncol. 2011;22:1071–7.

    Article  CAS  PubMed  Google Scholar 

  16. Haddad R, et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol. 2013;14:257–64.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen EEW, et al. DeCIDE: A phase III randomized trial of docetaxel(D), cisplatin(P), 5-fluorouracil(F)(TPF) induction chemotherapy (IC) in patients with N2/N3 locally advanced squamous cell carcinoma of the head and neck (SCCHN). J Clin Oncol 2012;30 (Suppl; abstr 5500).

    Google Scholar 

  18. Adelstein DJ, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92–8.

    Article  PubMed  Google Scholar 

  19. Haughey BH, et al. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States multicenter study. Head Neck. 2011;33:1683–94.

    Article  PubMed  Google Scholar 

  20. Quon H, et al. Transoral robotic surgery and adjuvant therapy for oropharyngeal carcinomas and the influence of p16(INK4a) on treatment outcomes. Laryngoscope. 2013;123:635–40.

    Article  PubMed  Google Scholar 

  21. Aebersold DM, et al. Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001;61:2911–6.

    CAS  PubMed  Google Scholar 

  22. Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 2004;23:293–310.

    Article  CAS  PubMed  Google Scholar 

  23. Becker A, et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys. 1998;42:35–41.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Schneider A. HIF-2alpha-mediated activation of the epidermal growth factor receptor potentiates head and neck cancer cell migration in response to hypoxia. Carcinogenesis. 2010;31:1202–10.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck—a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32.

    Article  PubMed  Google Scholar 

  26. Rischin D, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol. 2010;28:2989–95.

    Article  CAS  PubMed  Google Scholar 

  27. Rischin D, et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol. 2010;28:4142–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Rahimi AS, et al. p16, Cyclin D1, and HIF-1α predict outcomes of patients with oropharyngeal squamous cell carcinoma treated with definitive intensity-modulated radiation therapy. Int J Otolaryngol. 2012;2012:685951.

    PubMed Central  PubMed  Google Scholar 

  29. Hicks KO et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res. 2010;16(20):4946–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bonner JA et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11:21–8.

    Article  CAS  PubMed  Google Scholar 

  31. Vermorken JB et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359:1116–27.

    Article  CAS  PubMed  Google Scholar 

  32. Vermorken JB et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  PubMed  Google Scholar 

  33. Herbst RS, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol. 2005;23:5578–87.

    Article  CAS  PubMed  Google Scholar 

  34. Burtness et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23:8646–54.

    Article  PubMed  Google Scholar 

  35. Pirker R, et al. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012;13:33–42.

    Article  CAS  PubMed  Google Scholar 

  36. Licitra L, et al. Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur J Cancer. 2013;49:1161–8.

    Article  CAS  PubMed  Google Scholar 

  37. Rössle M, et al. EGFR expression and copy number changes in low T-stage oral squamous cell carcinomas. Histopathology. 2013;63:271–8.

    Article  PubMed  Google Scholar 

  38. Chung CH, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24:4170–6.

    Article  CAS  PubMed  Google Scholar 

  39. Pectasides E, et al. Comparative prognostic value of epidermal growth factor quantitative protein expression compared with FISH for head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17:2947–54.

    Article  CAS  PubMed  Google Scholar 

  40. Licitra L, et al. Evaluation of EGFR gene copy number as a predictive biomarker for the efficacy of cetuximab in combination with chemotherapy in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: EXTREME study. Ann Oncol. 2011;22:1078–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. De Roock W, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19(3):508–15.

    Article  PubMed  Google Scholar 

  42. Burtness B, et al. Activity of cetuximab (C) in head and neck squamous cell carcinoma (HNSCC) patients (pts) with PTEN loss or PIK3CA mutation treated on E5397, a phase III trial of cisplatin (CDDP) with placebo (P) or C. J Clin Oncol. 2013;31:6028.

    Google Scholar 

  43. Psyrri A, et al. Safety and Efficacy of cisplatin plus 5-FU and cetuximab in HPV positive and HPV negative recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M) SCCHN: analysis of the phase III EXTREME trial. Ann Oncol. 2012;23(9):10180.

    Google Scholar 

  44. Foon KA, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys. 2004;58:984–90.

    Article  CAS  PubMed  Google Scholar 

  45. Wirth LJ, et al. Phase I dose-finding study of paclitaxel with panitumumab, carboplatin and intensity-modulated radiotherapy in patients with locally advanced squamous cell cancer of the head and neck. Ann Oncol. 2010; 21:342–7.

    Article  CAS  PubMed  Google Scholar 

  46. Vermorken JB, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14:697–710.

    Article  CAS  PubMed  Google Scholar 

  47. Van Cutsem E, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.

    Article  PubMed  Google Scholar 

  48. Berger C, et al. Nimotuzumab and cetuximab block ligand-independent EGF receptor signaling efficiently at different concentrations. J Immunother. 2011;34:550–5.

    Article  CAS  PubMed  Google Scholar 

  49. Machiels JP, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol. 2011;12:333–43.

    Article  CAS  PubMed  Google Scholar 

  50. Bontognali S, et al. Analysis of the EGFR mutation status in head and neck squamous cell carcinoma before treatment with Gefitinib. Onkologie. 2013;36:161–6.

    Article  CAS  PubMed  Google Scholar 

  51. Argiris A, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2013;31:1405–14.

    Article  CAS  PubMed  Google Scholar 

  52. Stewart JS, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27:1864–71.

    Article  CAS  PubMed  Google Scholar 

  53. Gregoire V, et al. Gefitinib plus cisplatin and radiotherapy in previously untreated head and neck squamous cell carcinoma: a phase II, randomized, double-blind, placebo-controlled study. Radiother Oncol. 2011;100:62–9.

    Article  CAS  PubMed  Google Scholar 

  54. Thariat J, et al. Contrasted outcomes to gefitinib on tumoral IGF1R expression in head and neck cancer patients receiving postoperative chemoradiation (GORTEC trial 2004–02). Clin Cancer Res. 2012;18:5123–33.

    Article  CAS  PubMed  Google Scholar 

  55. Box C, et al. A novel serum protein signature associated with resistance to epidermal growth factor receptor tyrosine kinase inhibitors in head and neck squamous cell carcinoma. Eur J Cancer. 2013. doi:pii:S0959-8049(13)00213-X.

    Google Scholar 

  56. Del Campo JM, et al. Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br J Cancer. 2011;105:618–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. de Souza JA, et al. A phase II study of lapatinib in recurrent/metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2012;18:2336–43.

    Article  PubMed  Google Scholar 

  58. Harrington K, et al. Randomised Phase II study of oral lapatinib combined with chemoradiotherapy in patients with advanced squamous cell carcinoma of the head and neck: rationale for future randomised trials in human papilloma virus-negative disease. Eur J Cancer. 2013;49:1609–18.

    Article  CAS  PubMed  Google Scholar 

  59. Quesnelle KM, Grandis JR. Dual kinase inhibition of EGFR and HER2 overcomes resistance to cetuximab in a novel in vivo model of acquired cetuximab resistance. Clin Cancer Res. 2011;17:5935–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Miller VA, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38, Erratum in: Lancet Oncol. 2012;13:e186.

    Article  CAS  PubMed  Google Scholar 

  61. Lin NU, et al. A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat. 2012;133:1057–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Seiwert TY, et al. BIBW 2992 versus cetuximab in patients with metastatic or recurrent head and neck cancer (SCCHN) after failure of platinum-containing therapy with a cross-over period for progressing patients: Preliminary results of a randomized, open-label phase II study. J Clin Oncol. 2010;28:15s, 5501.

    Google Scholar 

  63. Shi Y, et al. Nuclear epidermal growth factor receptor interacts with transcriptional intermediary factor 2 to activate cyclin D1 gene expression triggered by the oncoprotein latent membrane protein 1. Carcinogenesis. 2012;33:1468–78.

    Article  CAS  PubMed  Google Scholar 

  64. Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci. 2012;2:13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Psyrri A, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res. 2005;11:5856–62.

    Article  CAS  PubMed  Google Scholar 

  66. Psyrri A, et al. Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiol Biomarkers Prev 2008;17:1486–92.

    Article  CAS  PubMed  Google Scholar 

  67. Friedmann BJ, et al. Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther. 2006;5:209–18.

    Article  CAS  PubMed  Google Scholar 

  68. Kim HP, et al. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2. PLoS One. 2009;4:e5933.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Li C, et al. Dasatinib blocks cetuximab- and radiation-induced nuclear translocation of the epidermal growth factor receptor in head and neck squamous cell carcinoma. Radiother Oncol. 2010;97:330–7.22–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Dittmann K, et al. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005;76:157–61.

    Article  CAS  PubMed  Google Scholar 

  71. Li C, et al. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene. 2009;28:3801–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Huang S, et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. 2004;64(15):5355–62.

    Article  CAS  PubMed  Google Scholar 

  73. Fasih A, et al. (111)In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer. Breast Cancer Res Treat. 2012;135:189–200.

    Article  CAS  PubMed  Google Scholar 

  74. Van Cutsem E, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.

    Article  PubMed  Google Scholar 

  75. Astsaturov I, et al. Synthetic Lethal Screen of an EGFR-Centered Network to Improve Targeted Therapies. Sci Signal. 2010;3:67–84.

    Article  Google Scholar 

  76. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci. 2010;67:1025–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lucas JT Jr, et al. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 2010;29:4449–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Hoellein A, et al. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck. Oncotarget. 2011;2:599–609.

    PubMed Central  PubMed  Google Scholar 

  79. Pectasides E, et al. Nuclear localization of signal transducer and activator of transcription 3 in head and neck squamous cell carcinoma is associated with a better prognosis. Clin Cancer Res. 2010;16:2427–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bonner JA, et al. Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma. Radiother Oncol. 2011;99:339–43.

    Article  CAS  PubMed  Google Scholar 

  81. Sen M, et al. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res. 2012;18:4986–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Friedman JA, et al. HSP90 Inhibitor SNX5422/2112 targets the dysregulated signal and transcription factor network and malignant phenotype of head and neck squamous cell carcinoma. Transl Oncol. 2013;6:429–41.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Lui VWY, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3:761–9.

    Article  CAS  PubMed  Google Scholar 

  84. Iglesias-Bartolome R, Martin D, Gutkind JS. Exploiting the head and neck cancer oncogenome: widespread PI3K-mTOR pathway alterations and novel molecular targets. Cancer Discov. 2013;3:722–5.

    Article  CAS  PubMed  Google Scholar 

  85. Burtness B, et al. Comment on “epidermal growth factor receptor is essential for toll-like receptor 3 signaling”. Sci Signal. 2012;5:lc5.

    Article  PubMed  Google Scholar 

  86. Herzog A, et al. PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res. 2013;19:3808–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang YF, et al. Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head Neck. 2012;34:1556–61.

    Article  PubMed  Google Scholar 

  88. Keysar SB, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res. 2013;73:3381–92.

    Article  CAS  PubMed  Google Scholar 

  89. Appleman LJ. MET signaling pathway: a rational target for cancer therapy. J Clin Oncol. 2011;29:4837–844.

    Article  CAS  PubMed  Google Scholar 

  90. Chen YS, et al. Expression of hepatocyte growth factor and c-met protein is significantly associated with the progression of oral squamous cell carcinoma in Taiwan. J Oral Pathol Med. 2004;33:209–17.45.

    Article  CAS  PubMed  Google Scholar 

  91. Seiwert TY, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69:3021–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Hamid O, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed  Google Scholar 

  93. Wolchok JD, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  94. Wong YK, et al. Association of CTLA-4 gene polymorphism with oral squamous cell carcinoma. J Oral Pathol Med. 2006;35:51–4.

    Article  CAS  PubMed  Google Scholar 

  95. Erfani N, et al. Strong Association of CTLA-4 Variation (CT60A/G) and CTLA-4 haplotypes with predisposition of Iranians to head and neck cancer. Iran J Immunol. 2012;9:188–98.

    CAS  PubMed  Google Scholar 

  96. Bharti V, Mohanti BK, Das SN. Functional genetic variants of CTLA-4 and risk of tobacco-related oral carcinoma in high-risk North Indian population. Hum Immunol. 2013;74:348–52.

    Article  CAS  PubMed  Google Scholar 

  97. Lyford-Pike S, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Erfani N, et al. Intracellular CTLA4 and regulatory T cells in patients with laryngeal squamous cell carcinoma. Immunol Invest. 2013;42:81–90.

    Article  CAS  PubMed  Google Scholar 

  99. Malaspina TS. et al. Enhanced programmed death 1 (PD-1) and PD-1 ligand (PD-L1) expression in patients with actinic cheilitis and oral squamous cell carcinoma. Cancer Immunol Immunother. 2011;60:965–74.

    Article  CAS  PubMed  Google Scholar 

  100. Vasilakopoulou M. et al. Effect of PDL-1 expression on prognosis in head and neck squamous cell carcinoma. J Clin Oncol. 2013;31:6012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Burtness MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burtness, B. (2014). Projections: Novel Therapies for HPV-Negative Cancers of the Head and Neck. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8815-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8815-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8814-9

  • Online ISBN: 978-1-4614-8815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics