Hypoxia and Radioresistance in Head and Neck Cancer

  • Peiwen Kuo
  • Quynh-Thu LeEmail author
Part of the Current Cancer Research book series (CUCR)


Despite advances in radiotherapy, disease control in locally advanced (LA) head and neck squamous cell carcinoma (HNSCC) has seen marginal improvement. Hypoxia, a common occurrence in HNSCC, is associated with poor prognosis through protection of cells from radiation-induced DNA damage and alteration of tumor biology to promote a malignant progression. Significant effort has been devoted to targeting hypoxia in radiotherapy, including modification of tumor oxygenation, modification of the tumor vasculature, manipulation of tumor oxygen consumption and developing agents to either sensitize hypoxic cancer cells to radiation or to destroy them altogether. However, these approaches have had limited success in the clinic. Subsequent analyses of these studies revealed the importance of appropriate patient selection for hypoxia-targeted therapies. For example, it is now known that patients with human papilloma virus (HPV)-associated oropharyngeal carcinoma (OPC) do not benefit from hypoxia-targeted therapy. The future of hypoxia-targeted treatment in HNSCC radiotherapy lies in establishing a reliable and reproducible biomarker(s) or an imaging approach that can reflect tumor oxygenation and serve to select patients with aggressive tumors for therapy intensification.


Head and neck Squamous cell carcinoma Hypoxia Radiation Radioresistance Oxygen enhancement ratio Nitroimidazole Tirapazamine HPV Pimonidazole Fluoromisonidazole Fluorodeoxyglucose Fluoroazomycinarabinofuranoside EF5 HIF-1α 


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Brizel DM. Targeting the future in head and neck cancer. Lancet Oncol. 2009;10:204–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Li XM, Di B, Shang YD, Zhou YQ, Ma HM, et al. [Analysis of risk factors in the prediction of distant metastases of head and neck squamous cell carcinomas]. Zhonghua Er Bi Yan Hou Ke Za Zhi. 2004;39:171–5.PubMedGoogle Scholar
  4. 4.
    Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006;368:843–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck-a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.PubMedCrossRefGoogle Scholar
  9. 9.
    Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys. 1998;42:35–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown JM. Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther. 2002;1:453–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Trotter MJ, Chaplin DJ, Durand RE, Olive PL. The use of fluorescent probes to identify regions of transient perfusion in murine tumors. Int J Radiat Oncol Biol Phys. 1989;16:931–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown JM. Tumor hypoxia, drug resistance, and metastases. J Natl Cancer Inst. 1990;82:338–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Karam PA, Leslie SA, Anbar A. The effects of changing atmospheric oxygen concentrations and background radiation levels on radiogenic DNA damage rates. Health Phys. 2001;81:545–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Wenzl T, Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy. Phys Med Biol. 2011;56:3251–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Nordsmark M, Overgaard M, Overgaard J. Pretreatment of oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996;41:31–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38:285–189.PubMedCrossRefGoogle Scholar
  18. 18.
    Rudat V, Stadler P, Becker A, Vanselow B, Dietz A, et al. Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther Onkol. 2001;177:462–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996;41:31–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol. 2006;24:727–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Ferreira MB, De Souza JA, Cohen EE. Role of molecular markers in the management of head and neck cancers. Curr Opin Oncol. 2011;23:259–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, et al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol. 2012.Google Scholar
  23. 23.
    Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, et al. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med. 2011;25:625–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis Rev. 2004;23:293–310.PubMedCrossRefGoogle Scholar
  26. 26.
    Semenza GL. (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007:cm8.Google Scholar
  27. 27.
    Takenaga K. Angiogenic signaling aberrantly induced by tumor hypoxia. Front Biosci. 2011;16:31–48.CrossRefGoogle Scholar
  28. 28.
    Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14:198–206.PubMedCrossRefGoogle Scholar
  30. 30.
    Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, et al. Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett. 2012;322:139–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol. 2000;57:39–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, et al. Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol. 2007.Google Scholar
  33. 33.
    Le QT, Sutphin PD, Raychaudhuri S, Yu SC, Terris DJ, et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003;9:59–67.PubMedGoogle Scholar
  34. 34.
    Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res. 1987;111:292–304.PubMedCrossRefGoogle Scholar
  35. 35.
    Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16:4843–52.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Young RJ, Moller A. Immunohistochemical detection of tumour hypoxia. Methods Mol Biol. 2010;611:151–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Troost EG, Laverman P, Philippens ME, Lok J, van der Kogel AJ, et al. Correlation of [18F]FMISO autoradiography and pimonidazole [corrected] immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging. 2008;35:1803–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Troost EG, Laverman P, Kaanders JH, Philippens M, Lok J, et al. Imaging hypoxia after oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiother Oncol. 2006;80:157–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Dubois L, Landuyt W, Haustermans K, Dupont P, Bormans G, et al. Evaluation of hypoxia in an experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer. 2004;91:1947–54.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res. 2006;12:5435–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46:253–60.PubMedGoogle Scholar
  42. 42.
    Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med. 2009;50:1020–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol. 2006;24:2098–104.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen L, Zhang Z, Kolb HC, Walsh JC, Zhang J, et al. (1)(8)F-HX4 hypoxia imaging with PET/CT in head and neck cancer: a comparison with (1)(8)F-FMISO. Nucl Med Commun. 2012;33:1096–102.PubMedCrossRefGoogle Scholar
  45. 45.
    Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, et al. Hypoxia-Specific Tumor Imaging with 18F-Fluoroazomycin Arabinoside. J Nucl Med. 2005;46:106–13.PubMedGoogle Scholar
  46. 46.
    Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, et al. Initial results of hypoxia imaging using 1-alpha-D:-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36:1565–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Rischin D, Fisher R, Peters L, Corry J, Hicks R. Hypoxia in head and neck cancer: studies with hypoxic positron emission tomography imaging and hypoxic cytotoxins. Int J Radiat Oncol Biol Phys. 2007;69:S61–S3.PubMedCrossRefGoogle Scholar
  48. 48.
    Evans SM, Joiner B, Jenkins WT, Laughlin KM, Lord EM, et al. Identification of hypoxia in cells and tissues of epigastric 9 L rat glioma using EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide]. Br J Cancer. 1995;72:875–82.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Chitneni SK, Bida GT, Dewhirst MW, Zalutsky MR. A simplified synthesis of the hypoxia imaging agent 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-[(18)F]pentafluoropropyl)-acetamide ([(18)F]EF5). Nucl Med Biol. 2012;39:1012–8.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Bourgeois M, Rajerison H, Guerard F, Mougin-Degraef M, Barbet J, et al. Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO-a selected review. Nucl Med Rev Cent East Eur. 2011;14:90–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Dubois LJ, Lieuwes NG, Janssen MH, Peeters WJ, Windhorst AD, et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A. 2011;108:14620–5.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vordermark D, Brown JM. Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol. 2003;179:801–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Brockton N, Dort J, Lau H, Hao D, Brar S, et al. High stromal carbonic anhydrase IX expression is associated with decreased survival in P16-negative head-and-neck tumors. Int J Radiat Oncol Biol Phys. 2011;80:249–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Hong DY, Lee BJ, Lee JC, Choi JS, Wang SG, et al. Expression of VEGF, HGF, IL-6, IL-8, MMP-9, Telomerase in Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol. 2009;2:186–92.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Le QT, Kong C, Lavori PW, O’Byrne K, Erler JT, et al. Expression and Prognostic Significance of a Panel of Tissue Hypoxia Markers in Head-and-Neck Squamous Cell Carcinomas. Int J Radiat Oncol Biol Phys. 2007;69:167–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Brix B, Mesters JR, Pellerin L, Johren O. Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation. J Neurosci. 2012;32:9727–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Qian D, Lin HY, Wang HM, Zhang X, Liu DL, et al. Involvement of ERK1/2 pathway in TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Mol Reprod Dev. 2004;68:198–204.PubMedCrossRefGoogle Scholar
  58. 58.
    Henk JM, Kunkler PB, Smith CW. Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet. 1977;2:101–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Haffty BG, Hurley R, Peters LJ. Radiation therapy with hyperbaric oxygen at 4 atmospheres pressure in the management of squamous cell carcinoma of the head and neck: results of a randomized clinical trial. Cancer J Sci Am. 1999;5:341–7.PubMedGoogle Scholar
  60. 60.
    Henk JM. Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer: a rationale for hypoxic cell sensitizers? Int J Radiat Oncol Biol Phys. 1986;12:1339–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Sealy R, Cridland S, Barry L, Norris R. Irradiation with misonidazole and hyperbaric oxygen: final report on a randomized trial in advanced head and neck cancer. Int J Radiat Oncol Biol Phys. 1986;12:1343–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Tobin DA, Vermund H. A randomized study of hyperbaric oxygen as an adjunct to regularly fractionated radiation therapy for clinical treatment of advanced neoplastic disease. Am J Roentgenol Radium Ther Nucl Med. 1971;111:613–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Bennett M, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy: a systematic review of randomised controlled trials. Cancer Treat Rev. 2008;34:577–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Giebfried JW, Lawson W, Biller HF. Complications of hyperbaric oxygen in the treatment of head and neck disease. Otolaryngol Head Neck Surg. 1986;94:508–12.PubMedGoogle Scholar
  65. 65.
    Bennett MH, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev. 2012;4:CD005007.PubMedGoogle Scholar
  66. 66.
    Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol. 2012;30:1777–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Cole S, Stratford IJ, Adams GE, Fielden EM, Jenkins TC. Dual-function 2-nitroimidazoles as hypoxic cell radiosensitizers and bioreductive cytotoxins: in vivo evaluation in KHT murine sarcomas. Radiat Res. 1990;124:S38–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Walton MI, Wolf CR, Workman P. Molecular enzymology of the reductive bioactivation of hypoxic cell cytotoxins. Int J Radiat Oncol Biol Phys. 1989;16:983–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Van den Bogaert WS, Schraub S, et al. The EORTC randomized trial on three fractions per day and misonidazole (trial no. 22811) in advanced head and neck cancer: long-term results and side effects. Radiother Oncol. 1995;35:91–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee DJ, Cosmatos D, Marcial VA, Fu KK, Rotman M, et al. Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys. 1995;32:567–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Eschwege F, Sancho-Garnier H, Chassagne D, Brisgand D, Guerra M, et al. Results of a European randomized trial of Etanidazole combined with radiotherapy in head and neck carcinomas [see comments]. Int J Radiat Oncol Biol Phys. 1997;39:275–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother Oncol. 1998;46:135–46.PubMedCrossRefGoogle Scholar
  73. 73.
    Zeman EM, Brown JM, Lemmon MJ, Hirst VK, Lee WW. SR 4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys. 1986;12:1239–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Dorie MJ, Brown JM. Modification of the antitumor activity of chemotherapeutic drugs by the hypoxic cytotoxic agent tirapazamine. Cancer Chemother Pharmacol. 1997;39:361–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Beck R, Roper B, Carlsen JM, Huisman MC, Lebschi JA, et al. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med. 2007;48:973–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee D, Trotti A, Spencer S, Rostock R, Fisher C, et al. Concurrent tirapazamine and radiotherapy for advanced head and neck carcinomas: a phase II study. Int J Radiat Oncol Biol Phys. 1998; 42:811-15.Google Scholar
  77. 77.
    Rischin D, Peters L, Fisher R, Macann A, Denham J, et al. Tirapazamine, Cisplatin, and Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol. 2005;23:79–87.PubMedCrossRefGoogle Scholar
  78. 78.
    Rischin D, Peters L, O’Sullivan B, Giralt J, Yuen K, et al. Phase III study of tirapazamine, cisplatin and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck. J Clin Oncol. 2008;26:abstr LBA6008.Google Scholar
  79. 79.
    Lee NY, Le QT. New developments in radiation therapy for head and neck cancer: intensity-modulated radiation therapy and hypoxia targeting. Semin Oncol. 2008;35:236–50.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Hu Y, Liu J, Huang H. Recent agents targeting HIF-1alpha for cancer therapy. J Cell Biochem. 2012.Google Scholar
  81. 81.
    Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2012.Google Scholar
  82. 82.
    Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discov. 2003;2:803–11.PubMedCrossRefGoogle Scholar
  83. 83.
    Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther. 2004;3:233–44.PubMedGoogle Scholar
  84. 84.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Meijer TW, Kaanders JH, Span PN, Bussink J. Targeting Hypoxia, HIF-1, and Tumor Glucose Metabolism to Improve Radiotherapy Efficacy. Clin Cancer Res. 2012;18:5585–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 2007;104:9445–50.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol. 2009;27:1992–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, et al. HPV-associated p16-expression and response to hypoxic modification of radiotherapy in head and neck cancer. Radiother Oncol. 2010;94:30–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Lassen P, Eriksen JG, Krogdahl A, Therkildsen MH, Ulhoi BP, et al. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6 & 7 trial. Radiother Oncol. 2011;100:49–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Kong CS, Narasimhan B, Cao H, Kwok S, Erickson JP, et al. The relationship between human papillomavirus status and other molecular prognostic markers in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2009;74:553–61.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Weinberger PM, Yu Z, Haffty BG, Kowalski D, Harigopal M, et al. Molecular classification identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable prognosis. J Clin Oncol. 2006;24:736–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Gillison ML, D’Souza G, Westra W, Sugar E, Xiao W, et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst. 2008;100:407–20.PubMedCrossRefGoogle Scholar
  94. 94.
    Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Rischin D, Young RJ, Fisher R, Fox SB, Le QT, et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol. 2010;28:4142–8.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Snow AN, Laudadio J. Human papillomavirus detection in head and neck squamous cell carcinomas. Adv Anat Pathol. 2010;17:394–403.PubMedCrossRefGoogle Scholar
  97. 97.
    Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol. 2006;24:2606–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Radiation OncologyStanford UniversityStanfordUSA

Personalised recommendations