Opacity pp 1-7 | Cite as


Part of the Astrophysics and Space Science Library book series (ASSL, volume 402)


Interaction of radiation with matter has been a pervasive causal phenomenon in the universe since the “Big Bang.” It unites physics and astronomy and has led to major discoveries in astrophysics. Opacity is a property of matter that determines its resistance to the transmission of radiation (or, more comprehensively, its resistance to energy transport by photons and elementary particles). It plays an important role in the formation, evolution, and structure of stars. For example, photon opacity provides the dominant obstacle to energy transport during star formation in the inner, opaque region of an accretion disk and later during nuclear burning of hydrogen and helium in the core of the star. Thus, opacity regulates the evolution of the universe since its creation. For this reason the principal investigators of opacities have been astrophysicists.


Star Formation Accretion Disk Stellar Structure Fine Structure Splitting Nuclear Burning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelman, S. J., Wiese, W. L.(1995): Astrophysical applications of powerful new databases: Joint discussion no. 16 of the 22nd General Assembly of the IAU. Astronomical Society of the Pacific, San Francisco. [1, 13]Google Scholar
  2. Armstrong, B. H. (1964b): ‘Research on opacity of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 4, 731–736. [1]Google Scholar
  3. Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., Meyerott, R. E. (1961): ‘Radiative properties of high temperature air.’ J. Quant. Spectr. Rad. Transfer 1, 143–162. [1]Google Scholar
  4. Armstrong, B. H., Johnston, R. R., Kelly, P. S., DeWitt, H. E., Brush, S. G. (1967): ‘Opacity of high-temperature air.’ Prog. High Temp. Phys. Chem. 1, 139–242. [1, 4, 5, 7]Google Scholar
  5. Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969a): ‘Optical properties of heated air – I. Basic procedures of spectral characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 89–111. [1]Google Scholar
  6. Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969b): ‘Optical properties of heated air – II. Integrated characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 113–122. [1]Google Scholar
  7. Berrington, K. (1997a): The Opacity Project, Volume 2. Inst. of Physics Publishing, Bristol, Philadelphia. [1, 3, 4]Google Scholar
  8. Berrington, K. A. (1997b): ‘The opacity and iron projects - an overview.’ In Photon and Electron Collisions with Atoms and Molecules. Eds. P. G. Burke and C. J. Joachain. Plenum Press; New York, London, p. 297–312. [1, 7]Google Scholar
  9. Biberman, L. M., Norman, G. E. (1967): ‘Continuous spectra of atomic gases and plasma.’ Soviet Phys. Usp. (Engl. trans.) 10, 52–90. [1, 5]Google Scholar
  10. Bode, G. (1965): ‘Die kontinuierliche Absorption von Sternatmosphären in Abhängigkeit von Druck, Temperatur und Elementhäufigkeiten.’ Institut für Theoretische Physik und Sternwarte der Universität Kiel report. [1]Google Scholar
  11. Carson, T. R. (1971): ‘Stellar opacities.’ In Progress in High Temperature Physics and Chemistry, Vol. 4. Ed. C. A. Rouse; Pergamon Press, Oxford, New York. [1, 9]Google Scholar
  12. Carson, T. R. (1972): ‘Stellar opacity.’ In Stellar Evolution. Eds. H.-Y. Chiu, A. Muriel; MIT Press, Cambridge, MA, London, England. [1]Google Scholar
  13. Carson, T. R. (1976): ‘Stellar opacities.’ Ann. Rev. Astron. Astrophys. 14, 95–117. [1]Google Scholar
  14. Carson, T. R., Hollingsworth, H. M. (1968): ‘A critique of the hydrogenic approximation in the calculation of stellar opacity.’ Mon. Not. Roy. Astron. Soc. 141, 77–108. [1, 4]Google Scholar
  15. Carson, T. R., Mayers, D. F., Stibbs, D. W. N. (1968): ‘The calculation of stellar radiative opacity.’ Mon. Not. Roy. Astron. Soc. 140, 483–536. [1, 4, 5, 12, 13]Google Scholar
  16. Cowley, C. R. (1970): Theory of Stellar Spectra. Gordon & Breach Science Publishers, New York, London, Paris. [1]Google Scholar
  17. Cox, A. N. (1965): ‘Stellar absorption coefficients and opacities.’ In Stars and Stellar Systems, Vol. 8: Stellar Structure, p. 195–268. Eds. L. H. Aller, D. B. McLaughlin; The University of Chicago Press, Chicago. [1, 4, 9, 11]Google Scholar
  18. Cox, A. N., Stewart, J. N. (1965): ‘Radiative and conductive opacities for eleven astrophysical mixtures.’ Astrophys. J. Suppl. Ser. 11, 22–46. [1, 9, 12]Google Scholar
  19. Cox, A. N., Stewart, J. N., Eilers, D. D. (1965): ‘Effects of bound-bound absorption on stellar opacities.’ Atrophys. J. Suppl. Ser. 11, 1–21. [1]Google Scholar
  20. Fano, U., Cooper, J. W. (1968): ‘Spectral distribution of atomic oscillator strengths.’ Rev. Mod. Phys. 40, 441–507. [1, 5]Google Scholar
  21. Hirschfelder, J. O., Magee, J. L. (1945): ‘Opacity and thermodynamic properties of air at high temperatures.’ Los Alamos Scientific Laboratory report LA-296. [1]Google Scholar
  22. Huebner, W. F. (1986): ‘Atomic and Radiative Processes in the Solar Interior.’ In Physics of the Sun. Ed. P. A. Sturrock; D. Reidel Publishing Co., Dordrecht, Boston, Lancaster, Tokyo, Vol. 1, p. 33–75. [1, 6, 13]Google Scholar
  23. Huebner, W. F., Mayer, H., Meyerott, R. E., Penner, S. S., (Eds.) (1965): ‘Opacities. Proceedings of the second international conference.’ J. Quant. Spectr. Rad. Transfer 5, 1–280. [1, 13]Google Scholar
  24. Hummer, D. G. (1991): ‘The opacity project and the practical utilization of atomic data.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 431–439. [1, 3]Google Scholar
  25. Jacobsohn, B. A. (1947): ‘The opacity of uranium at high temperature.’ Ph. D. Dissertation, Dept. Physics, University of Chicago, Chicago, IL. [1, 5, 7]Google Scholar
  26. Kivel, B. (1954): ‘Opacity of Air at High Temperatures.’ Los Alamos National Laboratory report LA-1738. [1]Google Scholar
  27. Kivel, B., Mayer, H., Bethe, H. (1957): ‘Radiation from hot air. Part I. Theory of nitric oxide absorption.’ Ann. Phys. (NY) 2, 57–80. [1, 7]Google Scholar
  28. Kurucz, R. L. (1970): ‘ATLAS: A computer program for calculating model stellar atmospheres.’ Smithsonian Astrophysical Observatory special report 309. [1, 7]Google Scholar
  29. Kurucz, R. L. (1979): ‘Model atmospheres for G, F, A, B, and O stars.’ Astrophys. J. Suppl. Ser. 40, 1–340. [1, 7]Google Scholar
  30. Kurucz, R. L. (1991): ‘New opacity calculations.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 441–448. [1, 7]Google Scholar
  31. Kurucz, R. L., Peytremann, E., Avrett, E. H. (1975): Blanketed Model Atmospheres for Early-Type Stars. Smithsonian Institution Press, Washington, DC. [1, 7]Google Scholar
  32. Landshoff, R. K. M., Magee, J. L. (Eds.) (1969): Thermal Radiation Phenomena, Vol. 1: Radiative Properties of Air. IFI/Plenum Data Corp., Plenum Publ. Corp. New York, Washington. [1]Google Scholar
  33. Magee, J. L., Aroeste, H. (1967): ‘Thermal Radiation Phenomena,’ Vol. 1–4. Defense Atomic Support Agency report DASA 1917. [1]Google Scholar
  34. Marr, G. V. (1967): Photoionization Processes in Gases. Academic Press, New York, London. [1]Google Scholar
  35. Marshak, R. E. (1945): ‘Opacity of Air, BeO, C, Fe, and U at High Temperatures.’ Los Alamos National Laboratory report LA-229. [1]Google Scholar
  36. Mayer, H. (1947): ‘Methods of Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-647. [1, 2, 3, 4, 7, 11]Google Scholar
  37. Mayer, H. L., (Ed.) (1964): ‘Conference on opacities.’ J. Quant. Spectr. Rad. Transfer 4, 581–760. [1, 13]Google Scholar
  38. Menzel, D. H., Bhatnagar, P. L., Sen, H. K. (1963): Stellar Interiors. Chapman & Hall, London. [1]Google Scholar
  39. Mihalas, D. (1978): Stellar Atmospheres. 2nd ed., W. H. Freeman & Co., San Francisco. [1, 2]Google Scholar
  40. Penner, S. S., Olfe, D. B. (1968): Radiation and Reentry. Academic Press, New York, London. [1, 2, 7, 11, 13]Google Scholar
  41. Rickert, A. (1995): ‘Review of the third international opacity workshop and code comparison study.’ J. Quant. Spectr. Rad. Transfer 54, 325–332. [1, 13]Google Scholar
  42. Rogers, F. J., Iglesias, C. A. (1992): ‘Radiative Atomic Rosseland Mean Opacity Tables.’ Astrophys. J. Suppl. Ser. 79, 507–568. [1, 13]Google Scholar
  43. Seaton, M. J. (1955): ‘Le calcul approximatif des sections efficaces de photoionisation atomique. II. Une relation entre le défaut quantique et la phase de la fonction d’onde à la limite spectrale.’ Compt. Rend. 240, 1317–1318. [3]Google Scholar
  44. Serduke, F. J. D., Minguez, E., Davidson, S. J., Iglesias, C. A. (2000): ‘WorkOp-IV summary: lessons from iron opacities.’ J. Quant. Spectr. Rad. Transfer 65, 527–541. [1, 13]Google Scholar
  45. Sneden, C., Johnson, H. R., Krupp, B. M. (1976): ‘A statistical method for treating molecular line opacities.’ Astrophys. J. 204, 281–289. [1, 7]Google Scholar
  46. Stewart, A. L. (1967): ‘The quantal calculation of photoionization cross sections.’ In Advances in Atomic and Molecular Physics. Eds. D. R. Bates and J. Estermann; Academic Press, New York, Vol. 3, p. 1–52. [1]Google Scholar
  47. Strom, S. E., Kurucz, R. L. (1966): ‘A statistical procedure for computing line-blanketed model stellar atmospheres with applications to the F5 IV star Procyon.’ J. Quant. Spectr. Rad. Transfer 6, 591–607. [1, 7]Google Scholar
  48. Tsuji, T. (1966a): ‘The atmospheric structure of late-type stars. I. Physical properties of cool gaseous mixtures and the effect of molecular line absorption on stellar opacities.’ Pub. Astron. Soc. Japan 18, 127–173. [1]Google Scholar
  49. Tsuji, T. (1966b): ‘Some problems on the atmospheric structure of late-type stars.’ Proc. Japan Acad. Tokyo 42, 258–263. [1]Google Scholar
  50. Tsuji, T. (1971): ‘Effect of molecular line absorptions on stellar opacities.’ Publ. Astron. Soc. Japan 23, 553–565. [1]Google Scholar
  51. Vitense, E. (1951): ‘Der Aufbau der Sternatmosphären. IV. Teil. Kontinuierliche Absorption und Streuung als Funktion von Druck und Temperatur.’ Z. Astrophys. 28, 81–112. [1, 4]Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Southwest Research Institute (SWRI) Space Science & Engineering DivisionSan AntonioUSA
  2. 2.TucsonUSA

Personalised recommendations