Skip to main content

Particle Dynamics and Design of Nano-drug Delivery Systems

  • Chapter
  • First Online:
  • 1677 Accesses

Abstract

Drug delivery systems are a very valuable instrument for cardiovascular and oncological applications, as well as for biomedical imaging. In this type of systems, it is very significant to achieve particle margination, i.e., the capability of particles to move through blood vessels towards the endothelium and sense biological and biophysical varieties. Numerical modeling of particle motion is important since it can simplify the analysis of influence of various parameters relevant in design of nanoparticles, such as size, shape, and surface characteristics. In this chapter lattice Boltzmann method was used to simulate motion of particles through fluid domain, and a specific type of particle-fluid interaction was modeled. Movement of both spherical and nonspherical particles was analyzed in classical test cases and diverse complex geometrical fluid domains. Agreement between lattice Boltzmann method and analytical solutions obtained with other methods indicates that this method and the developed software can be used to accurately model fluid flow in complex geometries and fluid-particle interaction in microcirculation, which is especially useful for simulations of particle transport and margination to the vessel walls, bio-imaging, and drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R. and Langer, R., 2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–60.

    Article  Google Scholar 

  2. Ferrari, M., 2005. Cancer Nanotechnology: Opportunities and Challenges. Nature Rev. Cancer. 5, 161–171.

    Article  Google Scholar 

  3. LaVan, D.A., Mcguire, T., Langer, R., 2003. Small-scale systems for in vivo drug delivery. Nat. Biotech. 21(10): 1184–1191.

    Article  Google Scholar 

  4. Choi, Y.S., Thomas, T., Kotlyar, A., Islam, M.T., Baker, J.R., 2005. Synthesis and Functional Evaluation of DNA-Assembled Polyamidoamine Dendrimer Clusters for Cancer Cell-Specific Targeting. Chemistry & Biology, 12:35–43, DOI 10.1016/j.chembiol.2004.10.016

    Article  Google Scholar 

  5. Duncan, R. 2003. The dawning era of polymer therapeutics. Nat. Rev Drug Discov. 2: 347–360.

    Article  Google Scholar 

  6. Cohen, M.H., Melnik, K., Boiarski, A.A., Ferrari, M., Martin, F.J., 2003. Microfabrication of silicon-based nanoporous particulates for medical applications, Biomedical Microdevices, 5: 253–259.

    Article  Google Scholar 

  7. Dillen, van T., van Blladeren, A., Polman, A., 2004. Ion beam shaping of colloidal assemblies, Materials Today: 40–46.

    Google Scholar 

  8. Rolland, J.P., Maynor, B.W., Euliss, L.E., Exner, A.E., Denison, G.M., DeSimone, J., 2005. Direct fabrication and harvesting of monodisperse, shape specific nano-biomaterials. J. M.J. Am. Chem. Soc. 127: 10096–10100.

    Article  Google Scholar 

  9. Greish, K., Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet ?, Drug Discovery Today: Technologies, vol. 9, issue 2, pp. 161–166, 2012.

    Google Scholar 

  10. Neri, D. and Bicknell, R. 2005. Tumour vascular targeting, Nat. Cancer. 570, 436–446.

    Article  Google Scholar 

  11. Jain, R.K., 1999. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng., 1, 241–263.

    Article  Google Scholar 

  12. Decuzzi, P., Ferrari, M., 2006. The adhesive strength of non-spherical particles mediated by specific interactions, Biomaterials, 27(30):5307–14.

    Article  Google Scholar 

  13. Goldman, A.J., Cox, R.J. and Brenner, H., 1967, Slow viscous motion of a sphere parallel to a plane wall I. Motion through a quiescent fluid, Chem. Eng. Sci., 22, 637–651.

    Article  Google Scholar 

  14. Bretherton, F.P., 1962., The motion of rigid particles in a shear flow at low Reynolds number, Journal of Fluid Mechanics, 14, 284–304.

    Article  MathSciNet  MATH  Google Scholar 

  15. Decuzzi, P., Lee, S., Bhushan, B. and Ferrari, M., 2005. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng., 33, 179–190.

    Article  Google Scholar 

  16. Gavze, E. and Shapiro, M., 1997. Particles in a shear flow near a solid wall: Effect of nonsphericity on forces and velocities. International Journal of Multiphase Flow, 23, 155–182.

    Article  MATH  Google Scholar 

  17. Gavze, E. and Shapiro, M., 1998. Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity, Journal of Fluid Mechanics, 371, 59–79.

    Article  MATH  Google Scholar 

  18. S. Wolfram, Cellular Automaton Fluids 1: Basic Theory.: J. Stat. Phys., 3/4:471–526, 1986.

    Google Scholar 

  19. D. H. Rothman and S. Zaleski, Lattice Gas Cellular Automata. Simple models of Complex Hydrodynamics. England: Cambridge University Press, 1997.

    Google Scholar 

  20. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems,” Phys. Rev. E, vol. 77, no. 5, pp. 511–525, 1954.

    Article  Google Scholar 

  21. T. Đukić, Modelling solid–fluid interaction using LB method, Master thesis, Kragujevac: Mašinski fakultet, 2012.

    Google Scholar 

  22. O. P. Malaspinas, Lattice Boltzmann Method for the Simulation of Viscoelastic Fluid Flows. Switzerland: PhD dissertation, 2009.

    Google Scholar 

  23. V. I. Krylov, Approximate Calculation of Integrals. New York: Macmillan, 1962

    MATH  Google Scholar 

  24. P.J. Davis and P. Rabinowitz, Mеthods of Numerical Integration. New York, 1984.

    Google Scholar 

  25. M.C. Sukop and D.T. Jr. Thorne, Lattice Boltzmann Modeling - An Introduction for Geoscientists and Engineers. Heidelberg: Springer, 2006.

    Google Scholar 

  26. M.A. Gallivan, D.R. Noble, J.G. Georgiadis, and R.O. Buckius, “An evaluation of the bounce-back boundary condition for lattice Boltzmann simulations,” Int J Num Meth Fluids, vol. 25, no. 3, pp. 249–263, 1997.

    Article  MATH  Google Scholar 

  27. T. Inamuro, M. Yoshina, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulations,” Phys. Fluids, vol. 7, no. 12, pp. 2928–2930, 1995.

    Article  MATH  Google Scholar 

  28. I. Ginzbourg and D. d ‘Humières, “Local second-order boundary method for lattice Boltzmann models,” J. Statist. Phys., vol. 84, no. 5–6, pp. 927–971, 1996.

    Google Scholar 

  29. B. Chopard and A. Dupuis, “A mass conserving boundary condition for lattice Boltzmann models,” Int. J. Mod. Phys. B, vol. 17, no. 1/2, pp. 103–108, 2003.

    Article  Google Scholar 

  30. Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1592–1598, 1997.

    Article  MathSciNet  Google Scholar 

  31. J. Latt and B. Chopard, “Lattice Boltzmann method with regularized non-equilibrium distribution functions,” Math. Comp. Sim., vol. 72, no. 1, pp. 165–168, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  32. P.A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method,” Phys. Rev. E, vol. 48, no. 6, pp. 4823–4842, 1993.

    Article  MathSciNet  Google Scholar 

  33. Z. Feng and E. Michaelides, “The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problem,” Journal of Computational Physics, vol. 195, no. 2, pp. 602–628, 2004.

    Article  MATH  Google Scholar 

  34. C. S. Peskin, “Numerical analysis of blood flow in the heart,” Journal of Computational Physics, vol. 25, no. 3, pp. 220–252, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Wu and C. Shu, “Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme,” Commun. Comput. Phys., vol. 7, no. 4, pp. 793–812, 2010.

    MathSciNet  Google Scholar 

  36. Z. Feng and E. Michaelides, “Proteus: A direct forcing method in the simulations of particulate flows,” Journal of Computational Physics, vol. 202, no. 1, pp. 20–51, 2005.

    Article  MATH  Google Scholar 

  37. M. Uhlmann, “An immersed boundary method with direct forcing for the simulation of particulate flows,” J. Comput. Phys., vol. 209, no. 2, pp. 448–476, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  38. X. D. Niu, C. Shu, Y. T. Chew, and Y. Peng, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows,” Phys. Lett. A, vol. 354, no. 3, pp. 173–182, 2006.

    Article  MATH  Google Scholar 

  39. J. Wu and C. Shu, “Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its application,” J. Comput. Phys., vol. 228, no. 6, pp. 1963–1979, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. T. Chwang and T. Y. Wu, “Hydromechanics of low-Reynolds-number flow, Part 4, Translation of spheroids,” J. Fluid Mech., vol. 75, no. 4, pp. 677–689, 1976.

    Article  MATH  Google Scholar 

  41. N. Filipovic, M. Kojic, P. Decuzzi, and M. Ferrari, “Dissipative Particle Dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow,” Microfluidics and Nanofluidics, vol. 10, no. 5, pp. 1127–1134, 2010.

    Article  Google Scholar 

  42. N. Filipovic, V. Isailovic, T. Djukic, M. Ferrari, and M. Kojic, “Multi-scale modeling of circular and elliptical particles in laminar shear flow,” IEEE Trans Biomed Eng, vol. 59, no. 1, pp. 50–53, 2012.

    Article  Google Scholar 

  43. G. B. Jeffery, “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R. Soc. Lond. A, vol. 102, no. 715, pp. 161–180, 1922.

    Article  Google Scholar 

  44. J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2, Couette and Poiseuille flows,” J. Fluid Mech., vol. 277, pp. 271–301, 1994.

    Article  MATH  Google Scholar 

  45. D. Wan and S. Turek, “Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method,” Int. J. Numer. Meth. Fluids, vol. 51, no. 5, pp. 531–566, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Li, H. Fang, Z. Lin, S. Xu, and S. Chen, “Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery,” Phys. Rev. E, vol. 69, no. 3, p. 031919, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Djukic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Djukic, T. (2013). Particle Dynamics and Design of Nano-drug Delivery Systems. In: Rakocevic, G., Djukic, T., Filipovic, N., Milutinović, V. (eds) Computational Medicine in Data Mining and Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8785-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8785-2_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8784-5

  • Online ISBN: 978-1-4614-8785-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics