Skip to main content

Chronic Mountain Sickness

  • Chapter
  • First Online:
Book cover High Altitude

Abstract

More than 140 million people live above 2,500 m worldwide, about 80 million in Asia, and approximately 35 million in the Andean mountains. The greatest population density is located above 3,500 m. Chronic mountain sickness (CMS) is one of the most important high-altitude pathologies in the majority of mountainous regions of the world. Its hallmark sign is excessive erythrocytosis (EE). In more advanced and severe stages, high-altitude pulmonary hypertension (HAPH) appears frequently, with related remodeling of pulmonary arterioles and right ventricular hypertrophy.

This chapter summarizes CMS clinical features, physiology, pathology, pathogenesis, epidemiology, and genetics. It is based on a systematic review of worldwide literature, with emphasis in the Andes, including the literature from pioneering work conducted several decades ago. The role of the evolution of erythrocytosis and of ventilatory function in the development of hypoxemia is highlighted. Hematologic and pulmonary systems are affected by several risk factors including age, obesity, sleep disorders, menopause, air, and metal pollution, and therefore, these aspects are analyzed as the basis of secondary CMS. We also examine how hypoxia and/or EE affect plasma volume, pulmonary hemodynamics, autonomic nervous system, kidneys, and endocrine function. A section on prevention and treatment discusses different available treatments and future therapeutic and prevention prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monge-M C, Sobre un caso de Enfermedad de Vaquez, In: Comunicacion presentada a la Academia Nacional de Medicina. 1925: Lima. Reimpresa en: Carlos Monge, Obras Vol 2. D. Bigio, Editor. 1988, CONCYTEC: Lima. p. 571–577.

    Google Scholar 

  2. Monge-M C, La enfermedad de los Andes, in Anales de la Facultad de Medicina. 1928, Universidad de Lima. Carlos Monge, editor: Lima. p. 1–309.

    Google Scholar 

  3. Leon-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol. 2005;6: 147–57.

    PubMed  Google Scholar 

  4. Monge CC, Leon-Velarde F, Arregui A. Chronic mountain sickness. In: Lenfant C, editor. High altitude. An exploration of human adaptation. New York: Marcel Dekker; 2001. p. 815–38.

    Google Scholar 

  5. Monge-M C, Monge-C C. High altitude disease: mechanism and management. Springfield, IL: Charles C. Thomas; 1966.

    Google Scholar 

  6. Monge CC, León-Velarde F. El Reto Fisiológico de Vivir en los Andes. Lima: IFEA, UPCH; 2003.

    Google Scholar 

  7. Wu TY, Li W, Li Y, et al. Epidemiology of chronic mountain sickness: ten years study in Quingai-Tibet. In: Ohno H, Kobayashi K, Masuyama S, Nakashima M, Matsumoto M, editors. Progress in mountain medicine and high altitude physiology. Matsumoto: Press Committee of the Third World Congress; 1998.

    Google Scholar 

  8. Leon-Velarde F, Arregui A, Vargas M, et al. Chronic mountain sickness and chronic lower respiratory tract disorders. Chest. 1994;106:151–5.

    CAS  PubMed  Google Scholar 

  9. Wu TY, Zhang Q, Jin B, et al. Chronic mountain sickness (Monge’s disease). An observation in Quingai-Tibet plateau. In: Ueda G, editor. High altitude medicine. Matsumoto, Japan: Shinshu University Press; 1992. p. 314–24.

    Google Scholar 

  10. Beall CM, Decker MJ, Brittenham GM, et al. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A. 2002; 99:17215–8.

    CAS  PubMed  Google Scholar 

  11. Beall CM. Andean, Tibetan and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol. 2006;46:18–24.

    PubMed  Google Scholar 

  12. Beall CM, Strohl KP, Blangero J, et al. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am J Phys Anthropol. 1997;104:427–47.

    CAS  PubMed  Google Scholar 

  13. Groves BM, Droma T, Sutton JR, et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol. 1993;74:312–8.

    CAS  PubMed  Google Scholar 

  14. Gupta ML, Rao KS, Anand IS, et al. Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted? Am Rev Respir Dis. 1992;145:1201–4.

    CAS  PubMed  Google Scholar 

  15. Beall CM, Brittenham GM, Strohl KP, et al. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol. 1998;106:385–400.

    CAS  PubMed  Google Scholar 

  16. Winslow RM, Chapman KW, Gibson CC, et al. Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J Appl Physiol. 1989; 66:1561–9.

    CAS  PubMed  Google Scholar 

  17. Moore LG. Comparative human ventilatory adaptation to high altitude. Respir Physiol. 2000;121: 257–76.

    CAS  PubMed  Google Scholar 

  18. Zhuang J, Droma T, Sun S, et al. Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3,658 m. J Appl Physiol. 1993;74:303–11.

    CAS  PubMed  Google Scholar 

  19. Beall CM, Cavalleri GL, Deng L, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107:11459–64.

    CAS  PubMed  Google Scholar 

  20. Leon-Velarde F, Richalet JP. Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt Med Biol. 2006;7:125–37.

    PubMed  Google Scholar 

  21. Leon-Velarde F, Gamboa A, Rivera-Ch M, et al. Selected contribution: Peripheral chemoreflex function in high-altitude natives and patients with chronic mountain sickness. J Appl Physiol. 2003; 94:1269–78. discussion 1253–4.

    PubMed  Google Scholar 

  22. Hurtado A. Chronic mountain sickness. JAMA. 1942; 120:1278–83.

    Google Scholar 

  23. Hurtado A. Some clinical aspects of life at high altitudes. Ann Intern Med. 1960;53:247–58.

    CAS  PubMed  Google Scholar 

  24. Lahiri S, DeLaney RG, Brody JS, et al. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature. 1976;261: 133–5.

    CAS  PubMed  Google Scholar 

  25. Severinghaus JW, Bainton CR, Carcelen A. Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir Physiol. 1966;1:308–34.

    CAS  PubMed  Google Scholar 

  26. Fatemian M, Gamboa A, Leon-Velarde F, et al. Selected contribution: ventilatory response to CO2 in high-altitude natives and patients with chronic mountain sickness. J Appl Physiol. 2003;94:1279–87. discussion 1253–4.

    PubMed  Google Scholar 

  27. Pedersen ME, Fatemian M, Robbins PA. Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans. J Physiol. 1999;521(Pt 1): 273–87.

    CAS  PubMed  Google Scholar 

  28. Manier G, Guenard H, Castaing Y, et al. Pulmonary gas exchange in Andean natives with excessive polycythemia–effect of hemodilution. J Appl Physiol. 1988;65:2107–17.

    CAS  PubMed  Google Scholar 

  29. Winslow RM, Monge CC, Brown EG, et al. Effects of hemodilution on O2 transport in high-altitude polycythemia. J Appl Physiol. 1985;59:1495–502.

    CAS  PubMed  Google Scholar 

  30. Reeves JT, Leon-Velarde F. Chronic mountain sickness: recent studies of the relationship between hemoglobin concentration and oxygen transport. High Alt Med Biol. 2004;5:147–55.

    CAS  PubMed  Google Scholar 

  31. Villafuerte FC, Cardenas R, Monge CC. Optimal hemoglobin concentration and high altitude: a theoretical approach for Andean men at rest. J Appl Physiol. 2004;96:1581–8.

    CAS  PubMed  Google Scholar 

  32. Cruz JC, Diaz C, Marticorena E, et al. Phlebotomy improves pulmonary gas exchange in chronic mountain polycythemia. Respiration. 1979;38:305–13.

    CAS  PubMed  Google Scholar 

  33. Winslow RM, Monge CC. Hypoxia, polycythemia and chronic mountain sickness. Baltimore, MD: John Hopkins University Press; 1986.

    Google Scholar 

  34. Monge CC. Hemoglobin regulation in hypoxemic polycythemia. Adjustments to high altitude. In International symposium on acclimatization, adaptation, and tolerance to High Altitude. 1983: NIH, editor, Baltimore, MD.

    Google Scholar 

  35. Monge CC. Regulacion de la concentracion de hemoglobina en la policitemia de altura: modelo matematico. Bull Inst Fr Etud Andines. 1990;19: 455–67.

    Google Scholar 

  36. Ergueta J, Spielvogel H, Cudkowicz L. Cardio-respiratory studies in chronic mountain sickness (Monge’s syndrome). Respiration. 1971;28: 485–517.

    CAS  PubMed  Google Scholar 

  37. Penaloza D, Sime F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am J Med. 1971;50:728–43.

    CAS  PubMed  Google Scholar 

  38. Richalet JP, Rivera-Ch M, Maignan M, et al. Acetazolamide for Monge’s disease: efficiency and tolerance of 6-month treatment. Am J Respir Crit Care Med. 2008;177:1370–6.

    CAS  PubMed  Google Scholar 

  39. Claydon VE, Norcliffe LJ, Moore JP, et al. Orthostatic tolerance and blood volumes in Andean high altitude dwellers. Exp Physiol. 2004;89:565–71.

    CAS  PubMed  Google Scholar 

  40. Peñaloza D, Sime F, Ruiz L. Cor pulmonale in chronic mountain sickness: present concept of Monge’s disease. In: Porter R, Knight J, editors. High altitude physiology: cardiac and respiratory aspects. Edinburgh: Churchill Livingstone; 1971. p. 41–60.

    Google Scholar 

  41. Jefferson JA, Escudero E, Hurtado ME, et al. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia. Am J Kidney Dis. 2002;39:1135–42.

    PubMed  Google Scholar 

  42. Richalet JP, Rivera M, Bouchet P, et al. Acetazolamide: a treatment for chronic mountain sickness. Am J Respir Crit Care Med. 2005;172: 1427–33.

    PubMed  Google Scholar 

  43. Saldan-a M, Arias-Stella J. Studies on the structure of the pulmonary trunk. III. The thickness of the media of the pulmonary trunk and ascending aorta in high altitude natives. Circulation. 1963;27:1101–4.

    CAS  PubMed  Google Scholar 

  44. Saldan-a M, Arias-Stella J. Studies on the structure of the pulmonary trunk. II. The evolution of the elastic configuration of the pulmonary trunk in people native to high altitudes. Circulation. 1963;27: 1094–100.

    CAS  PubMed  Google Scholar 

  45. Saldan-a M, Arias-Stella J. Studies on the structure of the pulmonary trunk. I. Normal changes in the elastic configuration of the human pulmonary trunk at different ages. Circulation. 1963;27:1086–93.

    CAS  PubMed  Google Scholar 

  46. Wagner KF, Katschinski DM, Hasegawa J, et al. Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin. Blood. 2001;97:536–42.

    CAS  PubMed  Google Scholar 

  47. Jefferson JA, Escudero E, Hurtado ME, et al. Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet. 2002;359:407–8.

    CAS  PubMed  Google Scholar 

  48. Ruschitzka FT, Wenger RH, Stallmach T, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci U S A. 2000;97:11609–13.

    CAS  PubMed  Google Scholar 

  49. Dainiak N, Spielvogel H, Sorba S, et al. Erythropoietin and the polycythemia of high-altitude dwellers. Adv Exp Med Biol. 1989;271:17–21.

    CAS  PubMed  Google Scholar 

  50. Gonzales GF, Gasco M, Tapia V, et al. High serum testosterone levels are associated to excessive erythrocytosis of Chronic Mountain Sickness in men. Am J Physiol Endocrinol Metab. 2009;296(6):E319–25.

    Google Scholar 

  51. Leon-Velarde F, Monge CC, Vidal A, et al. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis. Exp Hematol. 1991;19:257–60.

    CAS  PubMed  Google Scholar 

  52. Spivak JL. Erythropoietin: a brief review. Nephron. 1989;52:289–94.

    CAS  PubMed  Google Scholar 

  53. Bozzini CE, Alippi RM, Barcelo AC, et al. The biology of stress erythropoiesis and erythropoietin production. Ann N Y Acad Sci. 1994;718:83–92. discussion 92–3.

    CAS  PubMed  Google Scholar 

  54. Haase VH. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol. 2010;299:F1–13.

    CAS  PubMed  Google Scholar 

  55. Bernardi L, Roach RC, Keyl C, et al. Ventilation, autonomic function, sleep and erythropoietin. Chronic mountain sickness of Andean natives. Adv Exp Med Biol. 2003;543:161–75.

    CAS  PubMed  Google Scholar 

  56. Wide L, Bengtsson C, Birgegard G. Circadian rhythm of erythropoietin in human serum. Br J Haematol. 1989;72:85–90.

    CAS  PubMed  Google Scholar 

  57. Naeher LP, Brauer M, Lipsett M, et al. Woodsmoke health effects: a review. Inhal Toxicol. 2007;19: 67–106.

    CAS  PubMed  Google Scholar 

  58. Fullerton DG, Bruce N, Gordon SB. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R Soc Trop Med Hyg. 2008;102:843–51.

    PubMed  Google Scholar 

  59. Fullerton DG, Semple S. Air pollution and health: indoor air pollution in the developing world is the real key to reducing the burden of ill health. Thorax. 2008;63:288. author reply 288.

    CAS  PubMed  Google Scholar 

  60. Chirinos A, Malpartida N, Matos C, et al. Exposure to indoor biomass fuel and to high altitude (4100m) on health status and Chronic Mountain Sickness: effect of consumption of maca. High Alt Med Biol. 2010;11:A24.

    Google Scholar 

  61. Loew PG, Thews G. The dependency of the arterial oxygen pressure on age in the working population. Klin Wochenschr. 1962;40:1093–8.

    CAS  PubMed  Google Scholar 

  62. Sorbini CA, Grassi V, Solinas E, et al. Arterial oxygen tension in relation to age in healthy subjects. Respiration. 1968;25:3–13.

    CAS  PubMed  Google Scholar 

  63. Arai Y, Sherpa NK, Horie Y, et al., Arterial blood gas change with aging in Sherpa, in Progress in Mountain Medicine and High Altitude Physiology, Hideki Ohno, Toshio Kobayashi, Shigeru Nakashima, and Michiro Matsumoto, Editors. 1992, Press Committee of the 3rd World Congress in Mountain Medicine and High Altitude Physiology. Matsumoto, Japan.

    Google Scholar 

  64. Leon-Velarde F, Arregui A, Monge C, et al. Aging at high altitudes and the risk of Chronic Mountain Sickness. J Wild Med. 1993;4:183–8.

    Google Scholar 

  65. Whittembury J, Monge CC. High altitude, haematocrit and age. Nature. 1972;238:278–9.

    CAS  PubMed  Google Scholar 

  66. Sime F, Monge C, Whittembury J. Age as a cause of chronic mountain sickness (Monge’s disease). Int J Biometeorol. 1975;19:93–8.

    CAS  PubMed  Google Scholar 

  67. Monge CC, Leon-Velarde F, Arregui A. Increasing prevalence of excessive erythrocytosis with age among healthy high-altitude miners. N Engl J Med. 1989;321:1271.

    CAS  PubMed  Google Scholar 

  68. Leon-Velarde F, Arregui A. Desadaptacion a la vida en las grandes alturas. Lima: Institut français d’études andines (IFEA); 1994.

    Google Scholar 

  69. Vargas E, Spielvogel H. Chronic mountain sickness, optimal hemoglobin, and heart disease. High Alt Med Biol. 2006;7:138–49.

    PubMed  Google Scholar 

  70. Moore LG. Human genetic adaptation to high altitude. High Alt Med Biol. 2001;2:257–79.

    CAS  PubMed  Google Scholar 

  71. Moore LG, Niermeyer S, Zamudio S. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol. 1998;Suppl 27: 25–64.

    Google Scholar 

  72. Kreuzer F, Tenney SM, Mithoefer JC, et al. Alveolar-arterial oxygen gradient in Andean natives at high altitude. J Appl Physiol. 1964;19:13–6.

    CAS  PubMed  Google Scholar 

  73. Kryger M, Weil J, Grover R. Chronic mountain polycythemia: a disorder of the regulation of breathing during sleep? Chest. 1978;73:303–4.

    CAS  PubMed  Google Scholar 

  74. Normand H, Vargas E, Bordachar J, et al. Sleep apneas in high altitude residents (3,800 m). Int J Sports Med. 1992;13 Suppl 1:S40–2.

    PubMed  Google Scholar 

  75. Spicuzza L, Casiraghi N, Gamboa A, et al. Sleep-related hypoxaemia and excessive erythrocytosis in Andean high-altitude natives. Eur Respir J. 2004; 23:41–6.

    CAS  PubMed  Google Scholar 

  76. Tatsumi K, Hannhart B, Moore LG. Hormonal influences on ventilatory control. In: Dempsey JA, Pack AI, editors. Regulation of breathing. New York: Marcel Dekker, Inc.; 1995. p. 829–64.

    Google Scholar 

  77. Ou LC, Sardella GL, Leiter JC, et al. Role of sex hormones in development of chronic mountain sickness in rats. J Appl Physiol. 1994;77:427–33.

    CAS  PubMed  Google Scholar 

  78. Leon-Velarde F, Ramos MA, Hernandez JA, et al. The role of menopause in the development of chronic mountain sickness. Am J Physiol. 1997;272:R90–4.

    CAS  PubMed  Google Scholar 

  79. Leon-Velarde F, Rivera-Chira M, Tapia R, et al. Relationship of ovarian hormones to hypoxemia in women residents of 4,300 m. Am J Physiol Regul Integr Comp Physiol. 2001;280:R488–93.

    CAS  PubMed  Google Scholar 

  80. Goodland RL, Reynolds JG, Pommerenke WT. Alveolar carbon dioxide tension levels during pregnancy and early puerperium. J Clin Endocrinol Metab. 1954;14:522–30.

    CAS  PubMed  Google Scholar 

  81. Takano N, Sakai A, Iida Y. Analysis of alveolar PCO2 control during the menstrual cycle. Pflugers Arch. 1981;390:56–62.

    CAS  PubMed  Google Scholar 

  82. Santolaya BR, Arraya CJ, Vecchiola DA, et al. Gases y pH en sangre arterial en 176 hombres y 162 mujeres sanas trabajadores no mineros residentes a 2899 mts de altura. Rev Hosp Roy H Glover. 1982;2:7–18.

    Google Scholar 

  83. Hirsila M, Koivunen P, Xu L, et al. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J. 2005;19: 1308–10.

    CAS  PubMed  Google Scholar 

  84. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004;19:176–82.

    CAS  Google Scholar 

  85. The mystery of the Quebec beer-drinkers’ cardiomyopathy. Can Med Assoc J, 1967. 97: p. 930–1.

    Google Scholar 

  86. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242: 1412–5.

    CAS  PubMed  Google Scholar 

  87. Saxena S, Shukla D, Saxena S, et al. Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf). 2010;200:249–63.

    CAS  Google Scholar 

  88. Shrivastava K, Ram MS, Bansal A, et al. Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High Alt Med Biol. 2008;9:63–75.

    CAS  PubMed  Google Scholar 

  89. Shrivastava K, Shukla D, Bansal A, et al. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress. Neurochem Int. 2008;52:368–75.

    CAS  PubMed  Google Scholar 

  90. Miranda LF, Macarlupu JL, Leon-Velarde F, et al. Elevated serum zinc levels and excessive erythrocytosis. High Alt Med Biol. 2010;11:A91.

    Google Scholar 

  91. Bernal PJ, Leelavanichkul K, Bauer E, et al. Nitric-oxide-mediated zinc release contributes to hypoxic regulation of pulmonary vascular tone. Circ Res. 2008;102:1575–83.

    CAS  PubMed  Google Scholar 

  92. Monge CC, Cazorla A, Whittembury G, et al. A description of the circulatory dynamics in the heart and lungs of people at sea level and at high altitude by means of the dye dilution technique. Acta Physiol Lat Am. 1955;5:198–210.

    CAS  PubMed  Google Scholar 

  93. Sanchez C, Merino C, Figallo M. Simultaneous measurement of plasma volume and cell mass in polycythemia of high altitude. J Appl Physiol. 1970;28:775–8.

    CAS  PubMed  Google Scholar 

  94. Lozano R, Monge C. Renal function in high-altitude natives and in natives with chronic mountain sickness. J Appl Physiol. 1965;20:1026–7.

    CAS  PubMed  Google Scholar 

  95. Monge CC, Lozano R, Marchena C, et al. Kidney function in the high-altitude native. Fed Proc. 1969;28:1199–203.

    CAS  PubMed  Google Scholar 

  96. Gonzales E. Hemodinamica Renal en el Nativo de Altura estudiado a nivel del mar. Lima: Universidad Peruana Cayetano Heredia; 1971.

    Google Scholar 

  97. Monge C, Lozano R, Carcelen A. Renal excretion of bicarbonate in high altitude natives and in natives with Chronic Mountain Sickness. J Clin Invest. 1964;43:2303–9.

    CAS  PubMed  Google Scholar 

  98. Rennie D, Marticorena E, Monge C, et al. Urinary protein excretion in high-altitude residents. J Appl Physiol. 1971;31:257–9.

    CAS  PubMed  Google Scholar 

  99. Deem S, Swenson ER, Alberts MK, et al. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am J Respir Crit Care Med. 1998;157:1181–6.

    CAS  PubMed  Google Scholar 

  100. Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA. 2009;302:1444–50.

    CAS  PubMed  Google Scholar 

  101. Balanos GM, Dorrington KL, Robbins PA. Desferrioxamine elevates pulmonary vascular resistance in humans: potential for involvement of HIF-1. J Appl Physiol. 2002;92:2501–7.

    CAS  PubMed  Google Scholar 

  102. Smith TG, Balanos GM, Croft QP, et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J Physiol. 2008;586: 5999–6005.

    CAS  PubMed  Google Scholar 

  103. Balanos GM, Talbot NP, Dorrington KL, et al. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94: 1543–51.

    PubMed  Google Scholar 

  104. Pretell EA. Cambios en la función tiroidea en nativos de altura. In: IV Congreso Nacional de Medicina. Lima: Asociacion Medica Peruana “Daniel Alcides Carrión”; 1989.

    Google Scholar 

  105. Guerra-Garcia R, Llaque WR, Crandall ED. Observaciones sobre la funcion endocrina de pacientes con mal de montana cronico (MMC) estudiados a nivel del mar. Ica: Sociedad Peruana de Endocrinología; 1977. p. 80.

    Google Scholar 

  106. Guerra-Garcia R, Llerena LA, Garayar D, et al. Función endocrina hipófiso testicular en nativos de altura y en pacientes con mal de montaña crónico. Cusco: Sociedad Peruana de Endocrinología; 1973. p. 40.

    Google Scholar 

  107. Villena A, Zorrilla R, Guerra-Garcia R. Respuesta ortostática de aldosterona sérica en nativos normales y residentes de la altura y en pacientes con “mal de montaña crónico”. In: Congreso Peruano de Endocrinología. Lima: Sociedad Peruana de Endocrinología; 1987.

    Google Scholar 

  108. Guerra-García R, Gonez C, Zubiate M, et al. Función suprerrenal en nativos de altura y en pacientes con mal de montaña crónico. Cusco: Sociedad Peruana de Endocrinología; 1973. p. 42.

    Google Scholar 

  109. Adnot S, Andrivet P, Chabrier PE, et al. Plasma levels of atrial natriuretic factor, renin activity, and aldosterone in patients with chronic obstructive pulmonary disease. Response to O2 removal and to hyperoxia. Am Rev Respir Dis. 1990;141:1178–84.

    CAS  PubMed  Google Scholar 

  110. Hainsworth R, Drinkhill MJ, Rivera-Chira M. The autonomic nervous system at high altitude. Clin Auton Res. 2007;17:13–9.

    PubMed  Google Scholar 

  111. Claydon VE, Norcliffe LJ, Moore JP, et al. Cardiovascular responses to orthostatic stress in healthy altitude dwellers, and altitude residents with chronic mountain sickness. Exp Physiol. 2005;90: 103–10.

    CAS  PubMed  Google Scholar 

  112. Moore JP, Claydon VE, Norcliffe LJ, et al. Carotid baroreflex regulation of vascular resistance in high-altitude Andean natives with and without chronic mountain sickness. Exp Physiol. 2006;91:907–13.

    PubMed  Google Scholar 

  113. Roach R, Passino C, Bernardi L, et al. Cerebrovascular reactivity to CO2 at high altitude and sea level in Andean Natives. Clin Auton Res. 2001;11:183.

    Google Scholar 

  114. Norcliffe LJ, Rivera-Ch M, Claydon VE, et al. Cere-brovascular responses to hypoxia and hypocapnia in high-altitude dwellers. J Physiol. 2005;566:287–94.

    CAS  PubMed  Google Scholar 

  115. Claydon VE, Gulli G, Slessarev M, et al. Cerebrovascular responses to hypoxia and hypocapnia in Ethiopian high altitude dwellers. Stroke. 2008;39:336–42.

    PubMed  Google Scholar 

  116. Leon-Velarde F, Mejia O. Gene expression in chronic high altitude diseases. High Alt Med Biol. 2008;9:130–9.

    CAS  PubMed  Google Scholar 

  117. Appenzeller O, Minko T, Qualls C, et al. Gene expression, autonomic function and chronic hypoxia: lessons from the Andes. Clin Auton Res. 2006;16:217–22.

    PubMed  Google Scholar 

  118. Mejia OM, Prchal JT, Leon-Velarde F, et al. Genetic association analysis of chronic mountain sickness in an Andean high-altitude population. Haematologica. 2005;90:13–9.

    CAS  PubMed  Google Scholar 

  119. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays. 2004;26:943–54.

    CAS  PubMed  Google Scholar 

  120. Xing G, Qualls C, Huicho L, et al. Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns. PLoS One. 2008; 3:e2342.

    PubMed  Google Scholar 

  121. Huicho L, Xing G, Qualls C, et al. Abnormal energy regulation in early life: childhood gene expression may predict subsequent chronic mountain sickness. BMC Pediatr. 2008;8:47.

    PubMed  Google Scholar 

  122. Klein HG. Isovolemic hemodilution in high altitude polycythemia. In: Adjustments to High Altitude - Proceedings of the International Symposium on Acclimatization, Adaptation and Tolerance to High Altitude. 1983: NIH, editor, Baltimore, MD.

    Google Scholar 

  123. Rivera-Ch M, Leon-Velarde F, Huicho L. Treatment of chronic mountain sickness: critical reappraisal of an old problem. Respir Physiol Neurobiol. 2007;158: 251–65.

    PubMed  Google Scholar 

  124. Plata R, Cornejo A, Arratia C, et al. Angiotensin-converting-enzyme inhibition therapy in altitude polycythaemia: a prospective randomised trial. Lancet. 2002;359:663–6.

    CAS  PubMed  Google Scholar 

  125. Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression. Eur Respir J. 1998;12:1242–7.

    CAS  PubMed  Google Scholar 

  126. Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2006;151:209–16.

    CAS  PubMed  Google Scholar 

  127. Moore LG, Niermeyer S, Vargas E. Does chronic mountain sickness (CMS) have perinatal origins? Respir Physiol Neurobiol. 2007;158:180–9.

    PubMed  Google Scholar 

  128. Monge CC, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev. 1991;71:1135–72.

    CAS  PubMed  Google Scholar 

  129. Maignan M, Rivera-Ch M, Privat C, et al. Pulmonary pressure and cardiac function in chronic mountain sickness patients. Chest. 2009;135:499–504.

    PubMed  Google Scholar 

  130. Rivera-Ch M, Huicho L, Bouchet P, et al. Effect of acetazolamide on ventilatory response in subjects with chronic mountain sickness. Respir Physiol Neurobiol. 2008;162:184–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

León-Velarde, F., Rivera-Ch, M., Huicho, L., Villafuerte, F.C. (2014). Chronic Mountain Sickness. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics