High Altitude pp 357-377 | Cite as

Human Evolution at High Altitude

  • Cynthia M. Beall


This chapter reviews evidence that natural selection is acting or has acted on indigenous high-altitude populations of the Andean, Tibetan and East African plateaus and resulted in distinctive biological characteristics conferring vigor and health. It describes the results of classic era and genomic era approaches to detecting natural selection. Genomic era evidence of natural selection on high-altitude populations is accumulating rapidly and broadly supports that from the classic era. An important remaining step is to associate phenotypic with genomic variation and to associate them with survival and reproduction, the demographic currency of natural selection.


Natural Selection Hemoglobin Concentration Hypobaric Hypoxia Lactase Persistence Altitude Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Darwin C, Wallace A. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. In: Proceedings of the Linnaean society. 1858. p. 45–62.Google Scholar
  2. 2.
    Monge C. Acclimatization in the Andes. Reissued 1948 edition ed. Baltimore: The Johns Hopkins Press; 1978.Google Scholar
  3. 3.
    Hurtado A. Studies at high altitude: blood observations on the Indian natives of the Peruvian Andes. Am J Physiol. 1932;100:487–505.Google Scholar
  4. 4.
    Hurtado A. Respiratory adaptation in the Indian Natives of the Peruvian Andes. Studies at high altitude. Am J Phys Anthropol. 1932;17(2):137–65.Google Scholar
  5. 5.
    Baker PT. Human adaptation to high altitude. Science. 1969;163:1149–56.PubMedGoogle Scholar
  6. 6.
    Niermeyer S, Zamudio S, Moore LG. The people. In: Hornbein TF, Schoene RB, editors. High altitude an exploration of human adaptation. New York, NY: Marcel Dekker, Inc.; 2001. p. 43–100.Google Scholar
  7. 7.
    Hurtado A. Animals in high altitudes: resident man. In: Dill DB, editor. Handbook of physiology section 4: adaptation to the environment. Washington, DC: American Physiological Society; 1964. p. 843–59.Google Scholar
  8. 8.
    Beall CM, Laskowski D, Strohl KP, Soria R, Villena M, Vargas E, et al. Pulmonary nitric oxide in mountain dwellers. Nature. 2001;414:411–2.PubMedGoogle Scholar
  9. 9.
    Aldenderfer M. Peopling the Tibetan plateau: insights from archaeology. High Alt Med Biol. 2011; 12(2):141–7.PubMedGoogle Scholar
  10. 10.
    Aldenderfer MS. Moving Up in the World; archaeologists seek to understand how and when people came to occupy the Andean and Tibetan plateaus. Am Sci. 2003;91:542–9.Google Scholar
  11. 11.
    Fehren-Schmitz L, Warnberg O, Reindel M, Seidenberg V, Tomasto-Cagigao E, Isla-Cuadrado J, et al. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru. Ann Hum Genet. 2011;75(2):266–83.PubMedGoogle Scholar
  12. 12.
    Weinstein KJ. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory. Am J Phys Anthropol. 2007;134(1):36–49.PubMedGoogle Scholar
  13. 13.
    Pleurdeau D. Human technical behavior in the African middle stone age: the Lithic Assemblange of Porc-Epic Cave (Dire Dawa, Ethiopia). Afr Archaeol Rev. 2006;22(4):177–97.Google Scholar
  14. 14.
    Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004;74(6):1111.PubMedGoogle Scholar
  15. 15.
    Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG. The origins of lactase persistence in Europe. PLoS Comput Biol. 2009;5(8):e1000491.PubMedGoogle Scholar
  16. 16.
    Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, et al. Convergent adaptations of human lactase persistence in Africa and Europe. Nat Genet. 2007;39(1):31–40.PubMedGoogle Scholar
  17. 17.
    Rigat B, Hubert C, Corvol P, Soubrier F. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992;20(6):1433.PubMedGoogle Scholar
  18. 18.
    Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51(1):197.PubMedGoogle Scholar
  19. 19.
    Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40(5):575.PubMedGoogle Scholar
  20. 20.
    Endler JA. Natural selection in the wild. In: May RM, editor. Princeton, NJ: Princeton University Press; 1986.Google Scholar
  21. 21.
    Soria R, Julian CG, Vargas E, et al. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res. 2013 (in press).Google Scholar
  22. 22.
    Cosio G. Caracteristicas Hematicas y Cardiopulmonares Del Minero Andino. Bol Off Sanit Panama. 1972;72(June):547–57.Google Scholar
  23. 23.
    Villafuerte FC, Cardenas R, Monge CC. Optimal hemoglobin concentration and high altitude: a theoretical approach for Andean men at rest. J Appl Physiol. 2004;96(5):1581–8.PubMedGoogle Scholar
  24. 24.
    Ferrell RE, Bertin T, Barton SA, Rothhammer F, Schull WJ. The multinational Andean genetic and health program. IX. Gene frequencies and rate variants of 20 serum proteins and erythrocyte enzymes in the Aymara of Chile. Am J Hum Genet. 1980; 32:92–102.PubMedGoogle Scholar
  25. 25.
    Ferrell RE, Bertin T, Schull WJ. An electrophoretic study of glycolytic enzymes in a human population living at high altitude: the Aymara of Northern Chile and Western Bolivia. Hum Genet. 1981;56:397–9.PubMedGoogle Scholar
  26. 26.
    Chakraborty R, Clench J, Ferrell RE, Barton SA, Schull WJ. Genetic components of variation of red cell glycolytic intermediates at two altitudes among the South American Aymara. Ann Hum Biol. 1983;10(2):174–84.Google Scholar
  27. 27.
    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.PubMedGoogle Scholar
  28. 28.
    Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Pasha MA, et al. EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc Natl Acad Sci. 2010;107(44):18961–6.PubMedGoogle Scholar
  29. 29.
    Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol. 2011;28(2):1003–11.PubMedGoogle Scholar
  30. 30.
    Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011;117(23):e207–17.PubMedGoogle Scholar
  31. 31.
    Harrison GA. Human adaptability with reference to the IBP proposals for high altitude research. In: Baker PT, Weiner JS, editors. The biology of human adaptability. Oxford: Clarendon; 1966. p. 509–19.Google Scholar
  32. 32.
    Brutsaert TD, Soria R, Caceres E, Spielvogel H, Haas JD. Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American Natives. Am J Hum Biol. 1999;11:385–95.Google Scholar
  33. 33.
    Duplain H, Sartori C, Lepori M, Egli M, Allemann Y, Nicod P, et al. Exhaled nitric oxide in high-altitude pulmonary edema. Am J Crit Care Med. 2000;162:221–4.Google Scholar
  34. 34.
    Busch T, Bärtsch P, Pappert D, Grunig E, Hildebrandt W, Elser H, et al. Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2001;163:368–73.PubMedGoogle Scholar
  35. 35.
    Brown DE, Beall CM, Strohl KP, Mills PS. Exhaled nitric oxide decreases upon acute exposure to high-altitude hypoxia. Am J Hum Biol. 2006;18(2): 196–202.PubMedGoogle Scholar
  36. 36.
    Janocha AJ, Koch CD, Tiso M, Ponchia A, Doctor A, Gibbons L, et al. Nitric oxide during altitude acclimatization. N Engl J Med. 2011;365(20):1942–4.PubMedGoogle Scholar
  37. 37.
    Beall CM, Laskowski D, Erzurum SC. Nitric oxide in adaptation to altitude. Free Radic Biol Med. 2012;52(7):1123–34.PubMedGoogle Scholar
  38. 38.
    Donnelly J, Cowan DC, Yeoman DJ, et al. Exhaled nitric oxide and pulmonary artery pressures during graded ascent to high altitude. Respir Physiol Neurobiol. 2011;177:213–217.PubMedGoogle Scholar
  39. 39.
    Julian CG, Wilson MJ, Moore LG. Evolutionary adaptation to high altitude: a view from in utero. Am J Hum Biol. 2009;21(5):614–22.PubMedGoogle Scholar
  40. 40.
    Brutsaert T, Parra E, Shriver M, Gamboa A, Rivera-Chira M, Leon-Velarde F. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. Am J Physiol Regul Integr Comp Physiol. 2005;289:R225–34.PubMedGoogle Scholar
  41. 41.
    Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Palacios JA, Rivera M, et al. Spanish genetic admixture is associated with larger V(O2) max decrement from sea level to 4338 m in Peruvian Quechua. J Appl Physiol. 2003;95(2):519–28.PubMedGoogle Scholar
  42. 42.
    Brutsaert TD, Parra E, Shriver M, Gamboa A, Palacios JA, Rivera M, et al. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. Am J Phys Anthropol. 2004;123(4):390–8.PubMedGoogle Scholar
  43. 43.
    Harvey PH, Purvis A. Comparative methods for explaining adaptations. Nature. 1991;351(6328): 619–24.PubMedGoogle Scholar
  44. 44.
    Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, et al. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci. 2007;104(45):17593.PubMedGoogle Scholar
  45. 45.
    Hoit BD, Dalton ND, Erzurum SC, Laskowski D, Strohl KP, Beall CM. Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders. J Appl Physiol. 2006;99:1796–801.Google Scholar
  46. 46.
    Jansen GF, Basnyat B. Brain blood flow in Andean and Himalayan high-altitude populations: evidence of different traits for the same environmental constraint. J Cereb Blood Flow Metab. 2011;31(2):706–14.PubMedGoogle Scholar
  47. 47.
    Beall CM, Strohl K, Blangero J, Williams-Blangero S, Brittenham GM, Goldstein MC. Quantitative genetic analysis of arterial oxygen saturation in Tibetan highlanders. Hum Biol. 1997;69(5):597–604.PubMedGoogle Scholar
  48. 48.
    Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci. 2007;104 Suppl 1:8655.PubMedGoogle Scholar
  49. 49.
    Schwab M, Jayet PY, Stuber T, Salinas CE, Bloch J, Spielvogel H, et al. Pulmonary-artery pressure and exhaled nitric oxide in Bolivian and Caucasian high altitude dwellers. High Alt Med Biol. 2008; 9(4):295.PubMedGoogle Scholar
  50. 50.
    Jayet PY, Rimoldi SF, Stuber T, Salmon CS, Hutter D, Rexhaj E, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation. 2010;122(5):488–94.PubMedGoogle Scholar
  51. 51.
    Morin Y, Têtu A, Mercier G. Cobalt cardiomyopathy: clinical aspects. Br Heart J. 1971;33(Suppl):175–8.PubMedGoogle Scholar
  52. 52.
    Jefferson JA, Escudero E, Hurtado ME, Pando J, Tapia R, Swenson ER, et al. Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet. 2002;359:407–8.PubMedGoogle Scholar
  53. 53.
    Tufts DA, Haas JD, Beard JL, Spielvogel H. Distribution of hemoglobin and functional consequences of anemia in adult males at high altitude. Am J Clin Nutr. 1985;42:1–11.PubMedGoogle Scholar
  54. 54.
    Smith TG, Talbot NP, Privat C, Rivera-Ch M, Nickol AH, Ratcliffe PJ, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA. 2009;302(13):1444.PubMedGoogle Scholar
  55. 55.
    Harrison GA, Kuchemann CF, Moore MAS, Boyce AJ, Baju T, Mourant AE, et al. The effects of altitudinal variation in Ethiopian populations. Philos Trans R Soc Lond B Biol Sci. 1969;256(805):147–882.Google Scholar
  56. 56.
    Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 2012;8(12):e1003110.PubMedGoogle Scholar
  57. 57.
    Teshome D, Telahun T, Solomon D, Abdulhamid I. A study on birth weight in a teaching-referral hospital, Gondar, Ethiopia. Cent Afr J Med. 2006;52(1–2): 8–11.PubMedGoogle Scholar
  58. 58.
    Nekatibeb G, G/Mariam A. Analysis of birth weight in Metu Karl hospital: South West Ethiopia. Ethiop Med J. 2007;45(2):195–202.PubMedGoogle Scholar
  59. 59.
    Feleke Y, Enquoselassie F. Maternal age, parity and gestational age on the size of the newborn in Addis Ababa. East Afr Med J. 1999;76(8):468–71.PubMedGoogle Scholar
  60. 60.
    Madebo T. A two year retrospective study of birth weight in Sidamo Regional Hospital. Ethiop Med J. 1994;32(4):255–60.PubMedGoogle Scholar
  61. 61.
    Sheferaw T. Some factors associated with birth weight in Jima, southwestern Ethiopia. Ethiop Med J. 1990;28(4):183–90.PubMedGoogle Scholar
  62. 62.
    Green-Abate C. Changes in birthweight distribution from 1973 to 1982 in Addis Ababa. Bull World Health Organ. 1986;64(5):711–4.PubMedGoogle Scholar
  63. 63.
    Andersen GS, Girma T, Wells JC, Kæstel P, Michaelsen KF, Friis H. Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. Pediatr Res. 2011;70(5):501–6.PubMedGoogle Scholar
  64. 64.
    Moore LG, Charles SM, Julian CG. Humans at high altitude: hypoxia and fetal growth [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Respir Physiol Neurobiol. 2011;178(1):181–90.PubMedGoogle Scholar
  65. 65.
    Hoit BD, Dalton ND, Gebremedhin A, Janocha A, Zimmerman PA, Zimmerman AM, et al. Elevated pulmonary artery pressure among Amhara highlanders in Ethiopia. Am J Hum Biol. 2011;23(2):168–76.PubMedGoogle Scholar
  66. 66.
    Claydon VE, Gulli G, Slessarev M, Appenzeller O, Zenebe G, Gebremedhin A, et al. Cerebrovascular responses to hypoxia and hypocapnia in Ethiopian high altitude dwellers. Stroke. 2008;39(2):336–42.PubMedGoogle Scholar
  67. 67.
    Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A. 2002;99(26):17215–8.PubMedGoogle Scholar
  68. 68.
    Mekbeb T, Ketsela K. Pre-eclampsia/eclampsia at Yekatit 12 Hospital, Addis Ababa, Ethiopia (1987–1989). East Afr Med J. 1991;68(11):893–9.PubMedGoogle Scholar
  69. 69.
    Gong J, Savitz DA, Stein CR, Engel SM. Maternal ethnicity and pre-eclampsia in New York City, 1995–2003. Paediatr Perinat Epidemiol. 2012; 26(1):45–52.PubMedGoogle Scholar
  70. 70.
    López-Jaramillo P, García RG, López M. Preventing pregnancy-induced hypertension: are there regional differences for this global problem? J Hypertens. 2005;23(6):1121–9.PubMedGoogle Scholar
  71. 71.
    Beall CM, Song K, Elston RC, Goldstein MC. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc Natl Acad Sci U S A. 2004;101(39):14300–4.PubMedGoogle Scholar
  72. 72.
    Buderer MC, Page N. Hemopoiesis in the pig-tailed monkey, Macaca nemestrina during chronic altitude exposure. Am J Physiol. 1972;223(2):346–52.PubMedGoogle Scholar
  73. 73.
    Yu L, Wang X, Ting N, Zhang Y. Mitogenomic analysis of Chinese snub-nosed monkeys: evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion. 2011; 11(3):497–503.PubMedGoogle Scholar
  74. 74.
    Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, et al. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 2007;3(3):e45.PubMedGoogle Scholar
  75. 75.
    Ramirez JM, Folkow LP, Blix AS. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu Rev Physiol. 2007;69:113–43.PubMedGoogle Scholar
  76. 76.
    Winslow RM, Monge CC, Statham NJ, Gibson CG, Charache S, Whittembury J, et al. Variability of oxygen affinity of blood: human subjects native to high altitude. J Appl Physiol. 1981;51(6):1411–6.PubMedGoogle Scholar
  77. 77.
    McCracken KG, Bulgarella M, Johnson KP, Kuhner MK, Trucco J, Valqui TH, et al. Gene flow in the face of countervailing selection: adaptation to high-altitude hypoxia in the betaA hemoglobin subunit of yellow-billed pintails in the Andes. Mol Biol Evol. 2009;26(4):815.PubMedGoogle Scholar
  78. 78.
    Storz JF, Moriyama H. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol. 2008;9(2):148–57.PubMedGoogle Scholar
  79. 79.
    Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol. 2010;213(Pt 24):4125–36.PubMedGoogle Scholar
  80. 80.
    Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev. 1991;71(4):1135–71.PubMedGoogle Scholar
  81. 81.
    Beall CM. Detecting natural selection in high-altitude human populations. Respir Physiol Neurobiol. 2007;158(2–3):161–71.PubMedGoogle Scholar
  82. 82.
    Grocott M, Montgomery H. Genetophysiology: using genetic strategies to explore hypoxic adaptation. High Alt Med Biol. 2008;9(2):123–9.PubMedGoogle Scholar
  83. 83.
    Hancock AM, Di Rienzo A. Detecting the genetic signature of natural selection in human populations: models, methods, and data. Annu Rev Anthropol. 2008;37:197–217.PubMedGoogle Scholar
  84. 84.
    Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, et al. Positive natural selection in the human lineage. Science. 2006;312(5780): 1614–20.PubMedGoogle Scholar
  85. 85.
    Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–8.PubMedGoogle Scholar
  86. 86.
    The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063): 1299–320.Google Scholar
  87. 87.
    Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Yearb Phys Anthropol. 2006;49:89–130.Google Scholar
  88. 88.
    Bamshad M, Wooding SP. Signatures of natural selection in the human genome. Nat Rev Genet. 2003;4(2):99.PubMedGoogle Scholar
  89. 89.
    Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci. 2010;107(25):11459–64.PubMedGoogle Scholar
  90. 90.
    Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010; 329(5987):72–5.PubMedGoogle Scholar
  91. 91.
    Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010; 329(5987):75–8.PubMedGoogle Scholar
  92. 92.
    Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116.PubMedGoogle Scholar
  93. 93.
    Bigham AW, Mao X, Mei R, Brutsaert T, Wilson MJ, Julian CG, et al. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics. 2009;4(2):79–90.PubMedGoogle Scholar
  94. 94.
    Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, et al. Genetic variations in Tibetan populations and high altitude adaptation at the Himalayas. Mol Biol Evol. 2011;28:1075–81.PubMedGoogle Scholar
  95. 95.
    Wang B, Zhang YB, Zhang F, Lin H, Wang X, Wan N, et al. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS One. 2011;6(2):e17002.PubMedGoogle Scholar
  96. 96.
    Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Meskel DW, Beggs W, et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 2012;13:R1.PubMedGoogle Scholar
  97. 97.
    Storz JF. Evolution. Genes for high altitudes. Science. 2010;329(5987):40–1.PubMedGoogle Scholar
  98. 98.
    MacInnis MJ, Rupert JL. ‘ome on the Range: altitude adaptation, positive selection, and Himalayan genomics. High Alt Med Biol. 2011;12(2):133–9.PubMedGoogle Scholar
  99. 99.
    Rupert J. Will blood tell? Three recent articles demonstrate genetic selection in Tibetans. High Alt Med Biol. 2010;11(4):307–8.PubMedGoogle Scholar
  100. 100.
    Scheinfeldt LB, Tishkoff SA. Living the high life: high-altitude adaptation. Genome Biol. 2010;11(9):133–5.PubMedGoogle Scholar
  101. 101.
    Wilson MJ, Julian CG, Roach RC. Genomic analysis of high altitude adaptation: innovations and implications. Curr Sports Med Rep. 2011;10(2):59–61.PubMedGoogle Scholar
  102. 102.
    Cheviron ZA, Brumfield RT. Genomic insights into adaptation to high-altitude environments. Heredity. 2012;108:354–61.PubMedGoogle Scholar
  103. 103.
    van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt Med Biol. 2011;12(2):157–67.PubMedGoogle Scholar
  104. 104.
    Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol. 2003;206(Pt 17):2911–22.PubMedGoogle Scholar
  105. 105.
    Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology. 2004;19: 176–82.PubMedGoogle Scholar
  106. 106.
    Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PW, Ratcliffe PJ, et al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 2011;12(1):63–70.PubMedGoogle Scholar
  107. 107.
    Brakefield PM. Evo-devo and accounting for Darwin’s endless forms. Philos Trans Biol Sci. 2011;366(1574):2069–75.Google Scholar
  108. 108.
    Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4(3):e72.PubMedGoogle Scholar
  109. 109.
    Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009;19(5):826–37.PubMedGoogle Scholar
  110. 110.
    Ganesh SK, Zakai NA, van Rooij FJ, Soranzo N, Smith AV, Nalls MA, et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat Genet. 2009;41(11):1191–8.PubMedGoogle Scholar
  111. 111.
    Droma Y, Hanaoka M, Basnyat B, Arjyal A, Neupane P, Pandit A, et al. Adaptation to high altitude in Sherpas: association with the insertion/deletion polymorphism in the Angiotensin-converting enzyme gene. Wilderness Environ Med. 2008; 19(1):22–9.PubMedGoogle Scholar
  112. 112.
    Suzuki K, Kizaki T, Hitomi Y, Nukita M, Kimoto K, Miyazawa N, et al. Genetic variation in hypoxia-inducible factor 1alpha and its possible association with high altitude adaptation in Sherpas. Med Hypotheses. 2003;61(3):385–9.PubMedGoogle Scholar
  113. 113.
    Hochachka P, Rupert J. Fine tuning the HIF-1 ‘global’ O2 sensor for hypobaric hypoxia in Andean high-altitude natives. BioEssays. 2003;25(5):515–9.PubMedGoogle Scholar
  114. 114.
    Mejía OM, Prchal JT, León-Velarde F, Hurtado A, Stockton DW. Genetic association analysis of chronic mountain sickness in an Andean high-altitude population. Haematologica. 2005;90(1):13.PubMedGoogle Scholar
  115. 115.
    Puthucheary Z, Skipworth JR, Rawal J, Loosemore M, Van Someren K, Montgomery HE. The ACE gene and human performance: 12 years on. Sports Med. 2011;41(6):433–48.PubMedGoogle Scholar
  116. 116.
    Kumar R, Qadar Pasha M, Khan A, Gupta V, Grover S, Norboo T, et al. Association of high-altitude systemic hypertension with the deletion allele of the angiotensin-converting enzyme (ACE) gene. Int J Biometeorol. 2003;48(1):10–4.PubMedGoogle Scholar
  117. 117.
    Morrell NW, Sarybaev AS, Alikhan A, Mirrakhimov MM, Aldashev AA. ACE genotype and risk of high altitude pulmonary hypertension in Kyrghyz highlanders. Lancet. 1999;353(March 6):814.PubMedGoogle Scholar
  118. 118.
    Bigham AW, Kiyamu M, León-Velarde F, Parra EJ, Rivera-Ch M, Shriver MD, et al. Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol. 2008;9(2):167–78.PubMedGoogle Scholar
  119. 119.
    Droma Y, Hanaoka M, Basnyat B, Ariyal A, Neupane P, Pandit A, et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in Sherpas. High Alt Med Biol. 2006; 7(3):209–20.PubMedGoogle Scholar
  120. 120.
    Carroll KJ. Back to basics: explaining sample size in outcome trials, are statisticians doing a thorough job? Pharm Stat. 2009;8(4):333–45.PubMedGoogle Scholar
  121. 121.
    Luo Y, Gao W, Liu F, Gao Y. Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans. Mitochondrial DNA. 2011;22(5–6):181–90.PubMedGoogle Scholar
  122. 122.
    Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, et al. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol. 1994;93:189–99.PubMedGoogle Scholar
  123. 123.
    Merriwether DA, Ferrell RE. The four founding lineage hypothesis for the new world: a critical reevaluation. Mol Phylogenet Evol. 1996;5(1):241–6.PubMedGoogle Scholar
  124. 124.
    Myres JE, Malan M, Shumway JB, Rowe MJ, Amon E, Woodward SR. Haplogroup-associated differences in neonatal death and incidence of low birth weight at elevation: a preliminary assessment. Am J Obstet Gynecol. 2000;182(6):1599–605.PubMedGoogle Scholar
  125. 125.
    Haldane JB. Natural selection in man. Acta Genet Stat Med. 1956;6(3):321.PubMedGoogle Scholar
  126. 126.
    Weinstein RS, Haas JD. Early stress and later reproductive performance under conditions of malnutrition and high altitude hypoxia. Med Anthrop. 1977;1(1):25–54.Google Scholar
  127. 127.
    Bennett A, Sain SR, Vargas E, Moore LG. Evidence that parent-of-origin affects birth-weight reductions at high altitude. Am J Hum Biol. 2008;20(5):592.PubMedGoogle Scholar
  128. 128.
    Moore LG, Niermeyer S, Vargas E. Does chronic mountain sickness (CMS) have perinatal origins? Respir Physiol Neurobiol. 2007;158(2–3):180.PubMedGoogle Scholar
  129. 129.
    Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet. 1999;353(June 26):2205–7.PubMedGoogle Scholar
  130. 130.
    Beall CM. Adaptations to altitude: a current assessment. Annu Rev Anthropol. 2001;30:423–46.Google Scholar
  131. 131.
    Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young DA, Moore LG. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr Res. 2003;54(1):20–5.PubMedGoogle Scholar
  132. 132.
    Zamudio S. High-altitude hypoxia and preeclampsia. Front Biosci. 2007;12:2967.PubMedGoogle Scholar
  133. 133.
    Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007; 115(9):1132.PubMedGoogle Scholar
  134. 134.
    Wu T. High altitude heart disease in children in Tibet. High Alt Med Biol. 2002;3(3):323–5.PubMedGoogle Scholar
  135. 135.
    Leon-Velarde F, Monge CC, Arregui A, Stanley C. Increased prevalence of excessive erythrocytosis with age in healthy high altitude miners. In: Sutton JR, Coates G, Remmers JE, editors. Hypoxia: the adaptations. Toronto: B.C. Decker Inc; 1990. p. 280.Google Scholar
  136. 136.
    Gonzales GF, Steenland K, Tapia V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1477–85.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of AnthropologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations