Role of Surface Oxides on Model Nanocatalysts in Catalytic Activity of CO Oxidation



Rapid advances in the nanosciences and colloidal chemistry have generated new opportunities in the fields of physical and chemical science, including tuning the size, shape, and composition of noble metals at nanoscale, which have revealed many interesting properties. Studies identifying molecular factors that affect catalytic activity provide the means to control catalytic activity, a significant achievement in catalysis. Several molecular factors, including structural and electronic effects, metal–support interactions, and the presence of a surface oxide layer, have been reported as candidates for improving catalytic activity. Among these factors, the oxide layer on the metal surface is considered to play an important role in determining catalytic activity and there are a growing number of studies in this area. Understanding the chemical reactivity of a metal oxide is a rather complicated issue, requiring significant research to date. We outline here recent experimental work on the role of surface oxide on metal nanoparticles (NPs) that determines the catalytic activity of heterogeneous catalysis, including the effect of oxidation states of nanoparticles on the catalytic activity for model catalysts of single crystals and nanoparticles, with several examples, including Pt, Rh, Ru, and Pd.


Scanning Tunneling Microscope Image Surface Oxide Layer Infrared Reflection Absorption Spectroscopy Hyperactive State RuO2 Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the WCU (World Class University) program (31-2008-000-10055-0 and 2012R1A2A1A01009249) through the National Research Foundation, the Research Center Program (CA1201) of IBS (Institute for Basic Science), and from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.


  1. 1.
    Ertl G, Norton PR, Rustig J (1982) Kinetic oscillations in the platinum-catalyzed oxidation of Co. Phys Rev Lett 49:177–180CrossRefGoogle Scholar
  2. 2.
    Imbihl R, Cox MP, Ertl G (1986) Kinetic oscillations in the catalytic cooxidation on Pt(100)—experiments. J Chem Phys 84:3519–3534CrossRefGoogle Scholar
  3. 3.
    Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89:046101CrossRefGoogle Scholar
  4. 4.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95:255505CrossRefGoogle Scholar
  5. 5.
    Butcher DR, Grass ME, Zeng ZH, Aksoy F, Bluhm H, Li WX, Mun BS, Somorjai GA, Liu Z (2011) In situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133:20319–20325CrossRefGoogle Scholar
  6. 6.
    Baetzold RC, Apai G, Shustorovich E, Jaeger R (1982) Surface core-level shifts for Pt single-crystal surfaces. Phys Rev B 26:4022–4027CrossRefGoogle Scholar
  7. 7.
    Li W, Hammer B (2005) Reactivity of a gas/metal/metal-oxide three-phase boundary: CO oxidation at the Pt(111)-c(4 × 2)-2CO/alpha-PtO2 phase boundary. Chem Phys Lett 409:1–7CrossRefGoogle Scholar
  8. 8.
    Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129:1–6CrossRefGoogle Scholar
  9. 9.
    Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131CrossRefGoogle Scholar
  10. 10.
    Berlowitz PJ, Peden CHF, Goodman DW (1988) Kinetics of carbon monoxide oxidation on single-crystal palladium, platinum, and iridium. J Phys Chem 92:5213–5221CrossRefGoogle Scholar
  11. 11.
    Peden CHF, Goodman DW, Blair DS, Berlowitz PJ, Fisher GB, Oh SH (1988) Kinetics of carbon monoxide oxidation by oxygen or nitric oxide on rhodium(111) and rhodium(100) single crystals. J Phys Chem 92:1563–1567CrossRefGoogle Scholar
  12. 12.
    Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71:115442CrossRefGoogle Scholar
  13. 13.
    Gustafson J, Westerstroem R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, Andersen JN, Baddeley CJ, Lundgren E (2008) Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B 78:045423CrossRefGoogle Scholar
  14. 14.
    Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions. J Phys Chem C 114:4580–4583CrossRefGoogle Scholar
  15. 15.
    Ligthart DAJM, van Santen RA, Hensen EJM (2011) Supported rhodium oxide nanoparticles as highly active Co oxidation catalysts. Angew Chem Int Ed 50:5306–5310CrossRefGoogle Scholar
  16. 16.
    Lundgren E, Gustafson J, Resta A, Weissenrieder J, Mikkelsen A, Andersen JN, Kohler L, Kresse G, Klikovits J, Biederman A, Schmid M, Varga P (2005) The surface oxide as a source of oxygen on Rh(111). J Electron Spectrosc Relat Phen 144:367–372CrossRefGoogle Scholar
  17. 17.
    Shaikhutdinov S, Freund HJ (2012) Ultrathin oxide films on metal supports: structure-reactivity relations. Annu Rev Phys Chem 63:619–633Google Scholar
  18. 18.
    Gustafson J, Westerstrom R, Resta A, Mikkelsen A, Andersen JN, Balmes O, Torrelles X, Schmid M, Varga P, Hammer B, Kresse G, Baddeley CJ, Lundgren E (2009) Structure and catalytic reactivity of Rh oxides. Catal Today 145:227–235CrossRefGoogle Scholar
  19. 19.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during co oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896CrossRefGoogle Scholar
  20. 20.
    Nehasil V, Stará I, Matolín V (1995) Study of CO desorption and dissociation on Rh surfaces. Surf Sci 331–333(pt A):105–109CrossRefGoogle Scholar
  21. 21.
    Nehasil V, Stará I, Matolín V (1996) Size effect study of carbon monoxide oxidation by Rh surfaces. Surf Sci 352–354:305–309CrossRefGoogle Scholar
  22. 22.
    Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155CrossRefGoogle Scholar
  23. 23.
    Gong XQ, Liu ZP, Raval R, Hu P (2004) A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J Am Chem Soc 126:8–9CrossRefGoogle Scholar
  24. 24.
    Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv Catal 28:1–78Google Scholar
  25. 25.
    Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331CrossRefGoogle Scholar
  26. 26.
    McClure SM, Goodman DW (2009) New insights into catalytic CO oxidation on Pt-group metals at elevated pressures. Chem Phys Lett 469:1–13CrossRefGoogle Scholar
  27. 27.
    Lee H-I, White JM (1980) Carbon monoxide oxidation over Ru(001). J Catal 63:261–264CrossRefGoogle Scholar
  28. 28.
    Peden CHF, Goodman DW (1986) Kinetics of carbon monoxide oxidation over ruthenium(0001). J Phys Chem 90:1360–1365CrossRefGoogle Scholar
  29. 29.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287:1474–1476CrossRefGoogle Scholar
  30. 30.
    Kim YD, Over H, Krabbes G, Ertl G (2000) Identification of RuO2 as the active phase in CO oxidation on oxygen-rich ruthenium surfaces. Top Catal 14:95–100CrossRefGoogle Scholar
  31. 31.
    Over H, Muhler M (2003) Catalytic CO oxidation over ruthenium—bridging the pressure gap. Prog Surf Sci 72:3–17CrossRefGoogle Scholar
  32. 32.
    Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation over Ru(0001) at near-atmospheric pressures: from chemisorbed oxygen to RuO2. Surf Sci 603:1126–1134CrossRefGoogle Scholar
  33. 33.
    Cant NW, Hicks PC, Lennon BS (1978) Steady-state oxidation of carbon monoxide over supported noble metals with particular reference to platinum. J Catal 54:372–383CrossRefGoogle Scholar
  34. 34.
    Kiss JT, Gonzalez RD (1984) Catalytic oxidation of carbon monoxide over ruthenium/silicon dioxide. An in situ infrared and kinetic study. J Phys Chem 88:892–897CrossRefGoogle Scholar
  35. 35.
    Assmann J, Narkhede V, Khodeir L, Löffler E, Hinrichsen O, Birkner A, Over H, Muhler M (2004) On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J Phys Chem B 108:14634–14642CrossRefGoogle Scholar
  36. 36.
    Aßmann J, Crihan D, Knapp M, Lundgren E, Löffler E, Muhler M, Narkhede V, Over H, Schmid M, Seitsonen AP, Varga P (2005) Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. Angew Chem Int Ed 44:917–920CrossRefGoogle Scholar
  37. 37.
    Over H, Seitsonen AP (2002) Oxidation of metal surfaces. Science 297:2003–2005CrossRefGoogle Scholar
  38. 38.
    Over H, Knapp M, Lundgren E, Seitsonen AP, Schmid M, Varga P (2004) Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy. Chemphyschem 5:167–174CrossRefGoogle Scholar
  39. 39.
    Boudart M (1969) Catalysis by supported metals. Adv Catal 20:153–166Google Scholar
  40. 40.
    Che M, Bennett CO (1989) The influence of particle size on the catalytic properties of supported metals. Adv Catal 36:55–172Google Scholar
  41. 41.
    Bond GC (1991) Supported metal catalysts: some unsolved problems. Chem Soc Rev 20:441–475CrossRefGoogle Scholar
  42. 42.
    Van Santen RA (2008) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42:57–66CrossRefGoogle Scholar
  43. 43.
    Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605CrossRefGoogle Scholar
  44. 44.
    Narayanan R, El-Sayed M (2008) Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top Catal 47:15–21CrossRefGoogle Scholar
  45. 45.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325CrossRefGoogle Scholar
  46. 46.
    Somorjai G, Park J (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49:126–135CrossRefGoogle Scholar
  47. 47.
    Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95CrossRefGoogle Scholar
  48. 48.
    Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY (2012) Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett 12:5761–5768CrossRefGoogle Scholar
  49. 49.
    Singh J, Alayon EMC, Tromp M, Safonova OV, Glatzel P, Nachtegaal M, Frahm R, van Bokhoven JA (2008) Generating highly active partially oxidized platinum during oxidation of carbon monoxide over Pt/Al2O3: in situ, time-resolved, and high-energy-resolution X-ray absorption spectroscopy. Angew Chem Int Ed 47:9260–9264CrossRefGoogle Scholar
  50. 50.
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713CrossRefGoogle Scholar
  51. 51.
    Kim S, Qadir K, Jin S, Satyanarayana Reddy A, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today 185:131–137CrossRefGoogle Scholar
  52. 52.
    Böttcher A, Starke U, Conrad H, Blume R, Niehus H, Gregoratti L, Kaulich B, Barinov A, Kiskinova M (2002) Spectral and spatial anisotropy of the oxide growth on Ru(0001). J Chem Phys 117:8104–8109CrossRefGoogle Scholar
  53. 53.
    Knop-Gericke A, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) X-Ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213–272CrossRefGoogle Scholar
  54. 54.
    Moulder JF et al (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MNGoogle Scholar
  55. 55.
    Blume R, Havecker M, Zafeiratos S, Teschner D, Vass E, Schnorch P, Knop-Gericke A, Schlogl R, Lizzit S, Dudin P, Barinov A, Kiskinova M (2007) Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways. Phys Chem Chem Phys 9:3648–3657CrossRefGoogle Scholar
  56. 56.
    Park J-N, McFarland EW (2009) A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J Catal 266:92–97CrossRefGoogle Scholar
  57. 57.
    Obuya EA, Harrigan W, Andala DM, Lippens J, Keane TC, Jones WE Jr (2011) Photodeposited Pd nanoparticle catalysts supported on photoactivated TiO2 nanofibers. J Mol Catal A: Chem 340:89–98CrossRefGoogle Scholar
  58. 58.
    Castellazzi P, Groppi G, Forzatti P, Finocchio E, Busca G (2010) Activation process of Pd/Al2O3 catalysts for CH4 combustion by reduction/oxidation cycles in CH4-containing atmosphere. J Catal 275:218–227CrossRefGoogle Scholar
  59. 59.
    Ntainjua EN, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Kiely CJ, Hutchings GJ (2011) Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catal Today 178:47–50CrossRefGoogle Scholar
  60. 60.
    Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270CrossRefGoogle Scholar
  61. 61.
    Schalow T, Brandt B, Starr DE, Laurin M, Shaikhutdinov SK, Schauermann S, Libuda J, Freund HJ (2007) Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Phys Chem Chem Phys 9:1347–1361CrossRefGoogle Scholar
  62. 62.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerstrom R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Phys Chem Chem Phys 13:13167–13171CrossRefGoogle Scholar
  63. 63.
    Ludwig W, Savara A, Dostert K-H, Schauermann S (2011) Olefin hydrogenation on Pd model supported catalysts: new mechanistic insights. J Catal 284:148–156CrossRefGoogle Scholar
  64. 64.
    Weaver JF, Hinojosa JA Jr, Hakanoglu C, Antony A, Hawkins JM, Asthagiri A (2011) Precursor-mediated dissociation of n-butane on a PdO(101) thin film. Catal Today 160:213–227CrossRefGoogle Scholar
  65. 65.
    Gao F, Wang Y, Cai Y, Goodman DW (2008) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C 113:174–181CrossRefGoogle Scholar
  66. 66.
    Zheng G, Altman EI (2002) The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B 106:1048–1057CrossRefGoogle Scholar
  67. 67.
    Rupprechter G (2007) A surface science approach to ambient pressure catalytic reactions. Catal Today 126:3–17CrossRefGoogle Scholar
  68. 68.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf Sci 552:229–242CrossRefGoogle Scholar
  69. 69.
    Lichtenberger J, Lee D, Iglesia E (2007) Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Phys Chem Chem Phys 9:4902–4906CrossRefGoogle Scholar
  70. 70.
    Gabasch H, Hayek K, Klötzer B, Unterberger W, Kleimenov E, Teschner D, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R, Aszalos-Kiss B, Zemlyanov D (2007) Methane oxidation on Pd(111): in situ XPS identification of active phase. J Phys Chem C 111:7957–7962CrossRefGoogle Scholar
  71. 71.
    Campbell CT (2006) Transition metal oxides: extra thermodynamic stability as thin films. Phys Rev Lett 96:066106CrossRefGoogle Scholar
  72. 72.
    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Klötzer B, Hayek K (2000) Surface and subsurface oxygen on Pd(111). Surf Sci 445:380–393CrossRefGoogle Scholar
  73. 73.
    Gabasch H, Unterberger W, Hayek K, Klötzer B, Kresse G, Klein C, Schmid M, Varga P (2006) Growth and decay of the Pd(111)–Pd5O4 surface oxide: pressure-dependent kinetics and structural aspects. Surf Sci 600:205–218CrossRefGoogle Scholar
  74. 74.
    Kan HH, Shumbera RB, Weaver JF (2008) Adsorption and abstraction of oxygen atoms on Pd(111): characterization of the precursor to PdO formation. Surf Sci 602:1337–1346CrossRefGoogle Scholar
  75. 75.
    Chen M, Wang XV, Zhang L, Tang Z, Wan H (2010) Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir 26:18113–18118CrossRefGoogle Scholar
  76. 76.
    Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2010) CO oxidation on technological Pd–Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111CrossRefGoogle Scholar
  77. 77.
    Sheppard N, De La Cruz C (1998) In: Haag WO, Gates B, Eley DD, Helmut K (eds) Advances in catalysis, vol 42. Academic, pp 181–313Google Scholar
  78. 78.
    Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127:18269–18273CrossRefGoogle Scholar
  79. 79.
    Kibis LS, Stadnichenko AI, Koscheev SV, Zaikovskii VI, Boronin AI (2012) Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J Phys Chem C 116:19342–19348CrossRefGoogle Scholar
  80. 80.
    Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund HJ (2006) CO oxidation on partially oxidized Pd nanoparticles. J Catal 242:58–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jeong Young Park
    • 1
    • 2
  • Kamran Qadir
    • 1
    • 2
  • Sun Mi Kim
    • 1
    • 2
  1. 1.Graduate School of EEWS (WCU) and NanoCentury KIKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Center for Nanomaterials and Chemical ReactionsInstitute for Basic ScienceDaejeonRepublic of Korea

Personalised recommendations