Skip to main content

Dendrimer-Encapsulated Metal Nanoparticles: Synthesis and Application in Catalysis

  • Chapter
  • First Online:

Abstract

This review discusses the most recent advancements in understanding the structure of nanoparticles encapsulated in polyamidoamine (PAMAM) dendrimers. After a brief discussion of different synthesis techniques used to prepare dendrimer-encapsulated nanoparticles (DENs), we focus on the structure parameters that are fundamentally important for the application of DENs in catalysis, such as the oxidation state of Pt ions inside PAMAM dendrimers after reduction treatment. We also discuss several recently developed applications of DENs in catalysis, including the conversion of a homogeneous catalytic reaction to a heterogeneous one. This change allows the application of these nanoparticles in a liquid-phase continuous flow reactor. We also discuss two recent examples using Au and Cu DENs to enhance the diastereoselectivity and chemoselectivity of chemical reactions, respectively. A deep understanding of DEN structures is vitally important for the design of superior catalysts based on DENs for important chemical conversions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buhleier E, Wehner W, Vogtle F (1978). Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis-Stuttgart 2:155

    Google Scholar 

  2. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers—starburst-dendritic macromolecules. Polym J 17:117

    Article  CAS  Google Scholar 

  3. Newkome GR, Yao ZQ, Baker GR, Gupta VK, Russo PS, Saunders MJ (1986) Cascade molecules. 2. Synthesis and characterization of a benzene 9 3-arborol. J Am Chem Soc 108:849

    Article  CAS  Google Scholar 

  4. Majoral JP, Caminade AM (1999) Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev 99:845

    Article  CAS  Google Scholar 

  5. Cuadrado I, Moran M, Casado CM, Alonso B, Losada J (1999) Organometallic dendrimers with transition metals. Coord Chem Rev 193–5:395

    Article  Google Scholar 

  6. Hearshaw MA, Moss JR (1999) Organometallic and related metal-containing dendrimers. Chem Commun 1:1–8

    Google Scholar 

  7. de Brabander-van den Berg EMM, Meijer EW (1993) Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308

    Article  Google Scholar 

  8. Wörner C, Mülhaupt R (1993) Polynitrile- and polyamine-functional poly(trimethylene imine) dendrimers. Angew Chem Int Ed Engl 32:1306

    Article  Google Scholar 

  9. Tomalia DA (1994) Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Adv Mater 6:529

    Article  CAS  Google Scholar 

  10. Miller TM, Neenan TX (1990) Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem Mater 2:346

    Article  CAS  Google Scholar 

  11. Xu Z, Moore JS (1993) Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew Chem Int Ed Engl 32:1354

    Article  Google Scholar 

  12. Xu Z, Moore JS (1993) Synthesis and characterization of a high molecular weight stiff dendrimer. Angew Chem Int Ed Engl 32:246

    Article  Google Scholar 

  13. Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638

    Article  CAS  Google Scholar 

  14. Zeng FW, Zimmerman SC (1997) Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 97:1681

    Article  CAS  Google Scholar 

  15. Twyman LJ, King ASH, Martin IK (2002) Catalysis inside dendrimers. Chem Soc Rev 31:69

    Article  CAS  Google Scholar 

  16. Vassilev K, Ford WT (1999) Poly(propylene imine) dendrimer complexes of Cu(II), Zn(II), and Co(III) as catalysts of hydrolysis of p-nitrophenyl diphenyl phosphate. J Polym Sci A Polym Chem 37:2727

    Article  CAS  Google Scholar 

  17. Newkome GR, Moorefield CN, Baker GR, Johnson AL, Behera RK (1991) Alkane cascade polymers possessing micellar topology: micellanoic acid derivatives. Angew Chem Int Ed Engl 30:1176

    Article  Google Scholar 

  18. Stevelmans S, van Hest JCM, Jansen JFGA, van Boxtel DAFJ, de Brabander-van den Berg EMM, Meijer EW (1996) Synthesis, characterization, and guest–host properties of inverted unimolecular dendritic micelles. J Am Chem Soc 118:7398

    Article  CAS  Google Scholar 

  19. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 11:910

    Article  CAS  Google Scholar 

  20. Adronov A, Frechet JMJ (2000) Light-harvesting dendrimers. Chem Commun 1:1701

    Google Scholar 

  21. Bhattacharya P, Kim SH, Chen P, Chen R, Spuches AM, Brown JM, Lamm MH, Ke PC (2012) Dendrimer-fullerenol soft-condensed nanoassembly. J Phys Chem C 116:15775

    Article  CAS  Google Scholar 

  22. Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619

    Article  Google Scholar 

  23. Chandler BD, Gilbertson JD (2006) Dendrimer-Encapsulated Bimetallic Nanoparticles: Synthesis, Characterization, and Applications to Homogeneous and Heterogeneous Catalysis. In: Gade LH (ed) Dendrimer catalysis, vol 20, p 97 Springer-Verlag Berlin Heidelberg

    Google Scholar 

  24. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  25. van Heerbeek R, Kamer PCJ, van Leeuwen P, Reek JNH (2002) Dendrimers as support for recoverable catalysts and reagents. Chem Rev 102:3717

    Article  Google Scholar 

  26. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  27. Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991

    Article  CAS  Google Scholar 

  28. Broussard ME, Juma B, Train SG, Peng W-J, Laneman SA, Stanley GG (1993) A bimetallic hydroformylation catalyst: high regioselectivity and reactivity through homobimetallic cooperativity. Science 260:1784

    Article  CAS  Google Scholar 

  29. Li Y, Liu JH-C, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA (2011) A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: x-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J Am Chem Soc 133:13527

    Article  CAS  Google Scholar 

  30. Kragl U, Dreisbach C (1996) Continuous asymmetric synthesis in a membrane reactor. Angew Chem Int Ed Engl 35:642

    Article  CAS  Google Scholar 

  31. Castillo VA, Kuhn JN (2012) Role of the Ni:Fe ratio in ethylene hydrogenation activity for silica-supported Ni-Fe clusters prepared by dendrimer-templating. J Phys Chem C 116:8627

    Article  CAS  Google Scholar 

  32. Bae H, Rao KN, Ha H (2011) Structural characterization and catalytic activity of Pt dendrimer encapsulated nanoparticles supported over Al2O3 for SCR of NOx. J Nanosci Nanotechnol 11:6136

    Article  CAS  Google Scholar 

  33. Lopez-De Jesus YM, Vicente A, Lafaye G, Marecot P, Williams CT (2008) Synthesis and characterization of dendrimer-derived supported iridium catalysts. J Phys Chem C 112:13837

    Article  CAS  Google Scholar 

  34. Kuhn JN, Huang WY, Tsung CK, Zhang YW, Somorjai GA (2008) Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc 130:14026

    Article  CAS  Google Scholar 

  35. Krishnan GR, Sreekumar K (2008) First example of organocatalysis by polystyrene-supported PAMAM dendrimers: highly efficient and reusable catalyst for Knoevenagel condensations. European J Org Chem 281:4763

    Article  Google Scholar 

  36. Lu X, Imae T (2007) Dendrimer-mediated synthesis of water-dispersible carbon-nanotube-supported oxide nanoparticles. J Phys Chem C 111:8459

    Article  CAS  Google Scholar 

  37. Chase PA, Gebbink R, van Koten G (2004) Where organometallics and dendrimers merge: the incorporation of organometallic species into dendritic molecules. J Organomet Chem 689:4016

    Article  CAS  Google Scholar 

  38. Astruc D, Ornelas C, Aranzaes JR (2008) Ferrocenyl-terminated dendrimers: design for applications in molecular electronics, molecular recognition and catalysis. J Inorg Organomet Polym Mater 18:4

    Article  CAS  Google Scholar 

  39. Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41:841

    Article  CAS  Google Scholar 

  40. Astruc D (2012) Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat Chem 4:255

    Article  CAS  Google Scholar 

  41. Caminade A-M, Ouali A, Keller M, Majoral J-P (2012) Organocatalysis with dendrimers. Chem Soc Rev 41:4113

    Article  CAS  Google Scholar 

  42. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632

    Article  CAS  Google Scholar 

  43. Somorjai GA, Aliaga C (2010) Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts. Langmuir 26:16190

    Article  CAS  Google Scholar 

  44. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025

    Article  CAS  Google Scholar 

  45. Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang P (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem 118:7988

    Article  Google Scholar 

  46. Gomez MV, Giuerra J, Velders AH, Crooks RM (2009) NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J Am Chem Soc 131:341–350

    Article  CAS  Google Scholar 

  47. Niu YH, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840

    Article  CAS  Google Scholar 

  48. Balogh L, Tomalia DA (1998) Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120:7355

    Article  CAS  Google Scholar 

  49. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  50. Zhao MQ, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11:217

    Article  CAS  Google Scholar 

  51. Zhao MQ, Crooks RM (1999) Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew Chem Int Ed 38:364

    Article  CAS  Google Scholar 

  52. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett 8:2027

    Article  CAS  Google Scholar 

  53. Yeung LK, Crooks RM (2001) Heck heterocoupling within a dendritic nanoreactor. Nano Lett 1:14

    Article  CAS  Google Scholar 

  54. Niu YH, Crooks RM (2003) Preparation of dendrimer-encapsulated metal nanoparticles using organic solvents. Chem Mater 15:3463

    Article  CAS  Google Scholar 

  55. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3:106

    Article  CAS  Google Scholar 

  56. Nakamula I, Yamanoi Y, Yonezawa T, Imaoka T, Yamamoto K, Nishihara H (2008). Nanocage catalysts-rhodium nanoclusters encapsulated with dendrimers as accessible and stable catalysts for olefin and nitroarene hydrogenations. Chem Comm 44:5716

    Google Scholar 

  57. Ornelas C, Aranzaes JR, Salmon L, Astruc D (2008) “Click” dendrimers: synthesis, redox sensing of Pd(OAc)(2), and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. Chemistry 14:50

    Article  CAS  Google Scholar 

  58. Diallo AK, Ornelas C, Salmon L, Aranzaes JR, Astruc D (2007) “Homeopathic” catalytic activity and atom-leaching mechanism in Miyaura-Suzuki reactions under ambient conditions with precise dendrimer-stabilized Pd nanoparticles. Angew Chem Int Ed 46:8644

    Article  CAS  Google Scholar 

  59. Peng C, Li K, Cao X, Xiao T, Hou W, Zheng L, Guo R, Shen M, Zhang G, Shi X (2012) Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications. Nanoscale 4:6768

    Article  CAS  Google Scholar 

  60. Liu H, Sun K, Zhao J, Guo R, Shen M, Cao X, Zhang G, Shi X (2012) Dendrimer-mediated synthesis and shape evolution of gold-silver alloy nanoparticles. Colloids Surf A Physicochem Eng Asp 405:22

    Article  CAS  Google Scholar 

  61. Niu YH, Sun L, Crooks RA (2003) Determination of the intrinsic proton binding constants for poly(amidoamine) dendrimers via potentiometric pH titration. Macromolecules 36:5725

    Article  CAS  Google Scholar 

  62. Scott RWJ, Ye HC, Henriquez RR, Crooks RM (2003) Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem Mater 15:3873

    Article  CAS  Google Scholar 

  63. Knecht MR, Garcia-Martinez JC, Crooks RM (2005) Hydrophobic dendrimers as templates for Au nanoparticles. Langmuir 21:11981

    Article  CAS  Google Scholar 

  64. Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 atoms. Chem Mater 18:5039

    Article  CAS  Google Scholar 

  65. Knecht MR, Crooks RM (2007) Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms. New J Chem 31:1349

    Article  CAS  Google Scholar 

  66. Gates AT, Nettleton EG, Myers VS, Crooks RM (2010) Synthesis and characterization of NiSn dendrimer-encapsulated nanoparticles. Langmuir 26:12994

    Article  CAS  Google Scholar 

  67. Chandler BD, Long CG, Gilbertson JD, Pursell CJ, Vijayaraghavan G, Stevenson KJ (2010) Enhanced oxygen activation over supported bimetallic Au−Ni catalysts. J Phys Chem C 114:11498

    Article  CAS  Google Scholar 

  68. Zhao MQ, Crooks RM (1999) Intradendrimer exchange of metal nanoparticles. Chem Mater 11:3379

    Article  CAS  Google Scholar 

  69. Chung YM, Rhee HK (2003) Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd-Rh bimetallic nanoparticles. J Mol Catal A Chem 206:291

    Article  CAS  Google Scholar 

  70. Chung YM, Rhee HK (2003) Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor. Catal Lett 85:159

    Article  CAS  Google Scholar 

  71. Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J Am Chem Soc 125:3708

    Article  CAS  Google Scholar 

  72. Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Catal Surv Asia 8:211

    Article  CAS  Google Scholar 

  73. Scott RWJ, Wilson OM, Oh SK, Kenik EA, Crooks RM (2004) Bimetallic palladium-gold dendrimer-encapsulated catalysts. J Am Chem Soc 126:15583

    Article  CAS  Google Scholar 

  74. Weir MG, Knecht MR, Frenkel AI, Crooks RM (2010) Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26:1137

    Article  CAS  Google Scholar 

  75. Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J Am Chem Soc 126:12949

    Article  CAS  Google Scholar 

  76. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal−noble metal core−shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701

    Article  CAS  Google Scholar 

  77. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core−shell nanocatalysts: particle size, facet, and pt shell thickness effects. J Am Chem Soc 131:17298

    Article  CAS  Google Scholar 

  78. Zhai J, Huang M, Dong S (2007) Electrochemical designing of Au/Pt core shell nanoparticles as nanostructured catalyst with tunable activity for oxygen reduction. Electroanalysis 19:506

    Article  CAS  Google Scholar 

  79. Li X, Liu J, He W, Huang Q, Yang H (2010) Influence of the composition of core–shell Au–Pt nanoparticle electrocatalysts for the oxygen reduction reaction. J Colloid Interface Sci 344:132

    Article  CAS  Google Scholar 

  80. Carino EV, Crooks RM (2011) Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir 27:4227

    Article  CAS  Google Scholar 

  81. Yancey DF, Carino EV, Crooks RM (2010) electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles. J Am Chem Soc 132:10988

    Article  CAS  Google Scholar 

  82. Borodko Y, Thompson CM, Huang W, Yildiz HB, Frei H, Somorjai GA (2011) spectroscopic study of platinum and rhodium dendrimer (PAMAM G4OH) compounds: structure and stability. J Phys Chem C 115:4757

    Article  CAS  Google Scholar 

  83. Goldfarb TD, Khare BN (1967) Infrared spectra of solid and matrix-isolateD (CH3)3N (CD3)3N and (SIH3)3N. J Chem Phys 46:3379

    Article  CAS  Google Scholar 

  84. Murphy WF, Zerbetto F, Duncan JL, McKean DC (1993) Vibrational spectrum and harmonic force field of trimethylamine. J Phys Chem 97:581

    Article  CAS  Google Scholar 

  85. Lee S-H, Krimm S (1998) Ab initio-based vibrational analysis of α-poly(L-alanine). Biopolymers 46:283

    Article  CAS  Google Scholar 

  86. Garcia-Martinez JC, Scott RWJ, Crooks RM (2003) Extraction of monodisperse palladium nanoparticles from dendrimer templates. J Am Chem Soc 125:11190

    Article  CAS  Google Scholar 

  87. Ye HC, Scott RWJ, Crooks RM (2004) Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20:2915

    Article  CAS  Google Scholar 

  88. Ozturk O, Black TJ, Perrine K, Pizzolato K, Williams CT, Parsons FW, Ratliff JS, Gao J, Murphy CJ, Xie H, Ploehn HJ, Chen DA (2005) Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles. Langmuir 21:3998

    Article  CAS  Google Scholar 

  89. Alexeev OS, Siani A, Lafaye G, Williams CT, Ploehn HJ, Amiridis MD (2006) EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/gamma-Al2O3 catalysts. J Phys Chem B 110:24903

    Article  CAS  Google Scholar 

  90. Knecht MR, Weir MG, Myers VS, Pyrz WD, Ye HC, Petkov V, Buttrey DJ, Frenkel AI, Crooks RM (2008) Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem Mater 20:5218

    Article  CAS  Google Scholar 

  91. Petkov V, Bedford N, Knecht MR, Weir MG, Crooks RM, Tang W, Henkelman G, Frenkel A (2008) Periodicity and atomic ordering in nanosized particles of crystals. J Phys Chem C 112:8907

    Article  CAS  Google Scholar 

  92. Lang HF, May RA, Iversen BL, Chandler BD (2003) Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J Am Chem Soc 125:14832

    Article  CAS  Google Scholar 

  93. Deutsch DS, Lafaye G, Liu DX, Chandler B, Williams CT, Amiridis MD (2004) Decomposition and activation of Pt-dendrimer nanocomposites on a silica support. Catal Lett 97:139

    Article  CAS  Google Scholar 

  94. Beakley LW, Yost SE, Cheng R, Chandler BD (2005) Nanocomposite catalysts: dendrimer encapsulated nanoparticles immobilized in sol-gel silica. Appl Catal Gen 292:124

    Article  CAS  Google Scholar 

  95. Lafaye G, Siani A, Marecot P, Amiridis MD, Williams CT (2006) Particle size control in dendrimer-derived supported ruthenium catalysts. J Phys Chem B 110:7725

    Article  CAS  Google Scholar 

  96. Ye HC, Crooks RM (2005) Electrocatalytic O-2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J Am Chem Soc 127:4930

    Article  CAS  Google Scholar 

  97. Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J Am Chem Soc 128:4510

    Article  CAS  Google Scholar 

  98. Albiter MA, Crooks RM, Zaera F (2010) Adsorption of carbon monoxide on dendrimer-encapsulated platinum nanoparticles: liquid versus gas phase. J Phys Chem Lett 1:38

    Article  CAS  Google Scholar 

  99. Bond GC (1985) The origins of particle size effects in heterogeneous catalysis. Surf Sci 156(pt 2):966

    Article  CAS  Google Scholar 

  100. Witham CA, Huang WY, Tsung CK, Kuhn JN, Somorjai GA, Toste FD (2009) Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat Chem 2:36

    Article  Google Scholar 

  101. Huang W, Liu JH-C, Alayoglu P, Li Y, Witham CA, Tsung C-K, Toste FD, Somorjai GA (2010) Highly active heterogeneous palladium nanoparticle catalysts for homogeneous electrophilic reactions in solution and the utilization of a continuous flow reactor. J Am Chem Soc 132:16771

    Article  CAS  Google Scholar 

  102. Gross E, Liu JH-C, Toste FD, Somorjai GA (2012) Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time. Nat Chem 4:947

    Article  CAS  Google Scholar 

  103. Maity P, Yamazoe S, Tsukuda T (2013) Dendrimer-encapsulated copper cluster as a chemoselective and regenerable hydrogenation catalyst. ACS Catal 3:182

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the startup funds provided by Iowa State University and Ames National Laboratory, as well as a research fund from Iowa Energy Center. I am grateful to Dr. Chaoxian Xiao and Mr. Kyle Brashler for their help with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, W. (2014). Dendrimer-Encapsulated Metal Nanoparticles: Synthesis and Application in Catalysis. In: Park, J. (eds) Current Trends of Surface Science and Catalysis., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8742-5_4

Download citation

Publish with us

Policies and ethics