Skip to main content

Electronic Excitation on Surfaces During Chemical and Photon Processes

  • Chapter
  • First Online:
Current Trends of Surface Science and Catalysis
  • 2423 Accesses

Abstract

Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes [1–4]. Electron excitation in exothermic catalytic reactions or the incidence of photons on metal surfaces results in the flow of high-energy electrons with an energy of 1–3 eV, assuming that most of the chemical or photon energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called “hot electrons” [5–8]. There have been a number of studies demonstrating the influence of hot electrons on atomic and molecular processes. The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent experimental and theoretical studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces [9, 10]. In this chapter, I will outline recent research developing energy conversion devices based on hot electrons. The chemicurrent, or hot electron flows, is well correlated with the turnover rate of CO oxidation or hydrogen oxidation measured separately by gas chromatography, suggesting an intrinsic relation between the catalytic reactions and hot electron generation. We found that photon energy can be directly converted to hot electron flow through the metal–semiconductor interface of catalytic nanodiodes. We showed that hot electron flow generated on a gold thin film by photon absorption (or internal photoemission) is amplified by localized surface plasmon resonance. The influence of the flow of hot charge carriers on the chemistry at the oxide–metal interface and the turnover rate for the chemical reaction, for the cases of Pt–CaSe–Pt nanodumbbells and Pt/GaN substrates, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schindler B, Diesing D, Hasselbrink E (2011) Electronic excitations induced by hydrogen surface chemical reactions on gold. J Chem Phys 134:034705

    Google Scholar 

  2. Gergen B, Nienhaus H, Weinberg WH, McFarland EW (2001) Chemically induced electronic excitations at metal surfaces. Science 294:2521–2523

    CAS  Google Scholar 

  3. Nienhaus H (2002) Electronic excitations by chemical reactions on metal surfaces. Surf Sci Rep 45:3–78

    Google Scholar 

  4. Tully JC (2000) Chemical dynamics at metal surfaces. Annu Rev Phys Chem 51:153–178

    CAS  Google Scholar 

  5. Maximoff SN, Head-Gordon MP (2009) Chemistry of fast electrons. Proc Natl Acad Sci U S A 106:11460–11465

    CAS  Google Scholar 

  6. Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) The genesis and importance of oxide-metal interface controlled heterogeneous catalysis; the catalytic nanodiode. Top Catal 46:217–222

    CAS  Google Scholar 

  7. Shenvi N, Cheng HZ, Tully JC (2006) Nonadiabatic dynamics near metal surfaces: decoupling quantum equations of motion in the wide-band limit. Phys Rev A 74:10

    Google Scholar 

  8. Somorjai GA, Park JY (2007) The impact of surface science on the commercialization of chemical processes. Catal Lett 115:87–98

    CAS  Google Scholar 

  9. Gadzuk JW (2002) On the detection of chemically-induced hot electrons in surface processes: from X-ray edges to schottky barriers. J Phys Chem B 106:8265–8270

    CAS  Google Scholar 

  10. Shenvi N, Roy S, Parandekar P, Tully J (2006) Vibrational relaxation of NO on Au(111) via electron–hole pair generation. J Chem Phys 125:9

    Google Scholar 

  11. Kasemo B, Tornqvist E, Norskov JK, Lundqvist BI (1979) Photon and electron-emission as indicators of intermediate states in surface-reactions. Surf Sci 89:554–565

    CAS  Google Scholar 

  12. Bottcher A, Imbeck R, Morgante A, Ertl G (1990) Nonadiabatic surface-reaction: mechanism of electron-emission in the Cs + O-2 system. Phys Rev Lett 65:2035–2037

    Google Scholar 

  13. Kasemo B (1974) Photon emission during chemisorption of oxygen on Al and Mg surfaces. Phys Rev Lett 32:1114–1117

    CAS  Google Scholar 

  14. Kasemo B, Wallden L (1975) Photon and electron-emission during halogen adsorption on sodium. Surf Sci 53:393–407

    CAS  Google Scholar 

  15. Norskov JK, Newns DM, Lundqvist BI (1979) Molecular-orbital description of surface chemi-luminescence. Surf Sci 80:179–188

    Google Scholar 

  16. Born M, Oppenheimer R (1927) Zur quantentheorie der molekeln. Ann Phys 389:457–484

    Google Scholar 

  17. Schaich WL (1974) Brownian-motion model of surface chemical-reactions: derivation in large mass limit. J Chem Phys 60:1087–1093

    CAS  Google Scholar 

  18. Schaich WL (1975) Model calculation of Brownian-motion parameters at a metal-surface. Surf Sci 49:221–235

    CAS  Google Scholar 

  19. Dagliano EG, Kumar P, Schaich W, Suhl H (1975) Brownian-motion model of interactions between chemical species and metallic electrons: bootstrap derivation and parameter evaluation. Phys Rev B 11:2122–2143

    Google Scholar 

  20. Head-Gordon M, Tully JC (1992) Vibrational-relaxation on metal-surfaces: molecular-orbital theory and application to CO/Cu(100). J Chem Phys 96:3939–3949

    CAS  Google Scholar 

  21. Persson BNJ, Persson M (1980) Vibrational lifetime for co adsorbed on Cu(100). Solid State Commun 36:175–179

    CAS  Google Scholar 

  22. Persson BNJ, Persson M (1980) Damping of vibrations in molecules adsorbed on a metal-surface. Surf Sci 97:609–624

    CAS  Google Scholar 

  23. Huang YH, Rettner CT, Auerbach DJ, Wodtke AM (2000) Vibrational promotion of electron transfer. Science 290:111–114

    CAS  Google Scholar 

  24. White JD, Chen J, Matsiev D, Auerbach DJ, Wodtke AM (2005) Vibrationally promoted emission of electrons from low work function surfaces: oxygen and Cs surface coverage dependence. J Vac Sci Technol A 23:1085–1089

    CAS  Google Scholar 

  25. White JD, Chen J, Matsiev D, Auerbach DJ, Wodtke AM (2005) Conversion of large-amplitude vibration to electron excitation at a metal surface. Nature 433:503–505

    CAS  Google Scholar 

  26. Wodtke AM, Tully JC, Auerbach DJ (2004) Electronically non-adiabatic interactions of molecules at metal surfaces: can we trust the born-oppenheimer approximation for surface chemistry? Int Rev Phys Chem 23:513–539

    CAS  Google Scholar 

  27. Ogawa S, Petek H (1996) Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces. Surf Sci 363:313–320

    CAS  Google Scholar 

  28. Suarez C, Bron WE, Juhasz T (1995) Dynamics and transport of electronic carriers in thin gold-films. Phys Rev Lett 75:4536–4539

    CAS  Google Scholar 

  29. Hertel T, Knoesel E, Wolf M, Ertl G (1996) Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation. Phys Rev Lett 76:535–538

    CAS  Google Scholar 

  30. Lingle RL, Ge NH, Jordan RE, McNeill JD, Harris CB (1996) Femtosecond studies of electron tunneling at metal-dielectric interfaces. Chem Phys 205:191–203

    CAS  Google Scholar 

  31. Ogawa S, Nagano H, Petek H (1997) Hot-electron dynamics at Cu(100), Cu(110), and Cu(111) surfaces: comparison of experiment with Fermi-liquid theory. Phys Rev B 55:10869–10877

    CAS  Google Scholar 

  32. Petek H, Ogawa S (1997) Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog Surf Sci 56:239–310

    CAS  Google Scholar 

  33. Huang Y, Wodtke AM, Hou H, Rettner CT, Auerbach DJ (2000) Observation of vibration excitation and deexcitation for NO(ν = 2) scattering from Au(111): evidence for electron–hole-pair mediated energy transfer. Phys Rev Lett 84:2985–2988

    CAS  Google Scholar 

  34. Hou H, Huang Y, Gulding SJ, Rettner CT, Auerbach DJ, Wodtke AM (1999) Direct multiquantum relaxation of highly vibrationally excited NO in collisions with O/Cu(111). J Chem Phys 110:10660–10663

    CAS  Google Scholar 

  35. Hou H, Rettner CT, Auerbach DJ, Huang Y, Gulding SJ, Wodtke AM (1999) The interaction of highly vibrationally excited molecules with surfaces: vibrational relaxation and reaction of NO(v) at Cu(111) and O/Cu(111). Faraday Discuss 113:181–200

    CAS  Google Scholar 

  36. Diesing D, Winkes H, Otto A (1997) Time resolved investigation of the hydrogen evolution reaction on Ag(111), Ag(100), smooth polycrystalline, and activated polycrystalline silver surfaces. Phys Status Solidi A 159:243–254

    CAS  Google Scholar 

  37. Diesing D, Merschdorf M, Thon A, Pfeiffer W (2004) Identification of multiphoton induced photocurrents in metal-insulator-metal junctions. Appl Phys B-Lasers O 78:443–446

    CAS  Google Scholar 

  38. Thon A, Merschdorf M, Pfeiffer W, Klamroth T, Saalfrank P, Diesing D (2004) Photon-assisted tunneling versus tunneling of excited electrons in metal-insulator-metal junctions. Appl Phys A-Mater 78:189–199

    CAS  Google Scholar 

  39. Kovacs DA, Babkina T, Gans T, Czarnetzki U, Diesing D (2006) Electronic excitation in metals through hyperthermal atoms. J Phys D: Appl Phys 39:5224–5229

    CAS  Google Scholar 

  40. Kovacs DA, Winter J, Meyer S, Wucher A, Diesing D (2007) Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys Rev B 76:235408

    Google Scholar 

  41. Mildner B, Hasselbrink E, Diesing D (2006) Electronic excitations induced by surface reactions of H and D on gold. Chem Phys Lett 432:133–138

    CAS  Google Scholar 

  42. Kovacs DA, Peters T, Haake C, Schleberger M, Wucher A, Golczewski A, Aumayr F, Diesing D (2008) Potential electron emission induced by multiply charged ions in thin film tunnel junctions. Phys Rev B 77:245432

    Google Scholar 

  43. Marpe M, Heuser C, Diesing D, Wucher A (2011) Internal electron emission in metal-insulator-metal thin film tunnel devices bombarded with keV argon and gold-cluster projectiles. Nucl Instrum Methods Phys Res, Sect B 269:972–976

    CAS  Google Scholar 

  44. Peters T, Haake C, Diesing D, Kovacs DA, Golczewski A, Kowarik G, Aumayr F, Wucher A, Schleberger M (2008) Hot electrons induced by slow multiply charged ions. New J Phys 10:073019

    Google Scholar 

  45. Stella K, Kovacs DA, Diesing D, Brezna W, Smoliner J (2011) Charge transport through thin amorphous titanium and tantalum oxide layers. J Electrochem Soc 158:P65–P74

    CAS  Google Scholar 

  46. Thissen P, Schindler B, Diesing D, Hasselbrink E (2010) Optical response of metal-insulator-metal heterostructures and their application for the detection of chemicurrents. New J Phys 12:113014

    Google Scholar 

  47. Sharpe RG, Dixonwarren S, Durston PJ, Palmer RE (1995) The electronic catalyst: dissociation of chlorinated hydrocarbons by metal-insulator-metal electron emitters. Chem Phys Lett 234:354–358

    CAS  Google Scholar 

  48. Wadayama T, Kojim A, Hatta A (2004) Bias-voltage-induced decomposition of 2-methyl-1,4-naphthoquinone on Ag/AlOx/Al tunnel junction. Appl Phys A-Mater 79:1891–1894

    CAS  Google Scholar 

  49. Wadayama T, Yokawa M (2006) Hot-electron assisted reaction of p-nitrobenzoic acid adsorbed on metal-insulator-metal tunnel junction’s electrode surface. Chem Phys Lett 428:348–351

    CAS  Google Scholar 

  50. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Electron–hole pair creation at Ag and Cu surfaces by adsorption of atomic hydrogen and deuterium. Phys Rev Lett 82:446–449

    CAS  Google Scholar 

  51. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (2000) Direct detection of electron–hole pairs generated by chemical reactions on metal surfaces. Surf Sci 445:335–342

    CAS  Google Scholar 

  52. Resasco DE, Haller GL (1983) A model of metal-oxide support interaction for Rh on TiO2. J Catal 82:279–288

    CAS  Google Scholar 

  53. Haller GL, Resasco DE (1989) Metal support interaction: group-VIII metals and reducible oxides. Adv Catal 36:173–235

    CAS  Google Scholar 

  54. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394

    CAS  Google Scholar 

  55. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong-interactions in supported-metal catalysts. Science 211:1121–1125

    CAS  Google Scholar 

  56. Goodman DW (2005) “Catalytically active Au on titania”: yet another example of a strong metal support interaction (SMSI)? Catal Lett 99:1–4

    CAS  Google Scholar 

  57. Schwab GM (1967) Boundary-layer catalysis. Angew Chem Int Ed 6:375

    Google Scholar 

  58. Schwab GM, Siegert R (1966) Inverse Mischkatalysatoren. I. Kohlenmonoxid-Oxydation an Nickeloxid Auf Silber. Z Phys Chem (Frankfurt) 50:191

    CAS  Google Scholar 

  59. Hayek K, Fuchs M, Klotzer B, Reichl W, Rupprechter G (2000) Studies of metal-support interactions with “real” and “inverted” model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Top Catal 13:55–66

    CAS  Google Scholar 

  60. Penner S, Wang D, Podloucky R, Schlogl R, Hayek K (2004) Rh and Pt nanoparticles supported by CeO2: metal-support interaction upon high-temperature reduction observed by electron microscopy. Phys Chem Chem Phys 6:5244–5249

    CAS  Google Scholar 

  61. Penner S, Wang D, Su DS, Rupprechter G, Podloucky R, Schlogl R, Hayek K (2003) Platinum nanocrystals supported by silica, alumina and ceria: metal-support interaction due to high-temperature reduction in hydrogen. Surf Sci 532:276–280

    Google Scholar 

  62. Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes. Nano Lett 9:3930–3933

    CAS  Google Scholar 

  63. Park JY, Somorjai GA (2006) The catalytic nanodiode: detecting continous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction. Chemphyschem 7:1409–1413

    CAS  Google Scholar 

  64. Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605

    CAS  Google Scholar 

  65. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY (2011) Surface plasmon-driven hot electron flow probed with metal–semiconductor nanodiodes. Nano Lett 11:4251–4255

    CAS  Google Scholar 

  66. Ali M, Cimalla V, Lebedev V, Romanus H, Tilak V, Merfeld D, Sandvik P, Ambacher O (2006) Pt/GaN Schottky diodes for hydrogen gas sensors. Sensor Actuat B-Chem 113:797–804

    CAS  Google Scholar 

  67. Wang L, Nathan MI, Lim TH, Khan MA, Chen Q (1996) High barrier height GaN Schottky diodes: Pt/GaN and Pd/GaN. Appl Phys Lett 68:1267–1269

    Google Scholar 

  68. Dittrich T, Zinchuk V, Skryshevskyy V, Urban I, Hilt O (2005) Electrical transport in passivated Pt/TiO2/Ti Schottky diodes. J Appl Phys 98:104501

    Google Scholar 

  69. Schlatter JC, Boudart M (1972) Hydrogenation of ethylene on supported platinum. J Catal 24:482–492

    CAS  Google Scholar 

  70. Park JY, Renzas JR, Hsu BB, Somorjai GA (2007) Interfacial and chemical properties of Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes influencing hot electron flow. J Phys Chem C 111:15331–15336

    CAS  Google Scholar 

  71. Park JY, Somorjai GA (2006) Energy conversion from catalyic reaction to hot electron current with metal–semiconductor Schottky nanodiodes. J Vac Sci Technol B 24:1967–1971

    CAS  Google Scholar 

  72. Ji XZ, Zuppero A, Gidwani JM, Somorjai GA (2005) Electron flow generated by gas phase exothermic catalytic reactions using a platinum-gallium nitride nanodiode. J Am Chem Soc 127:5792–5793

    CAS  Google Scholar 

  73. Ji XZ, Zuppero A, Gidwani JM, Somorjai GA (2005) The catalytic nanodiode: gas phase catalytic reaction generated electron flow using nanoscale platinum titanium oxide Schottky diodes. Nano Lett 5:753–756

    CAS  Google Scholar 

  74. Roland U, Braunschweig T, Roessner F (1997) On the nature of spilt-over hydrogen. J Mol Catal A 127:61–84

    CAS  Google Scholar 

  75. Hanson FV, Boudart M (1978) Reaction between H2 and O2 over supported platinum catalysts. J Catal 53:56–67

    CAS  Google Scholar 

  76. Hellsing B, Kasemo B, Zhdanov VP (1991) Kinetics of the hydrogen oxygen reaction on platinum. J Catal 132:210–228

    CAS  Google Scholar 

  77. Kwong DWJ, Deleon N, Haller GL (1988) Desorption of carbon-dioxide molecules from a Pt(111) surface: a stochastic classical trajectory approach. Chem Phys Lett 144:533–540

    CAS  Google Scholar 

  78. McFarland EW, Tang J (2003) A photovoltaic device structure based on internal electron emission. Nature 421:616–618

    CAS  Google Scholar 

  79. Fowler RH (1931) The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys Rev 38:45–56

    CAS  Google Scholar 

  80. Stuckless JT, Moskovits M (1989) Enhanced 2-photon photoemission from coldly deposited silver films. Phys Rev B 40:9997–9998

    CAS  Google Scholar 

  81. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    CAS  Google Scholar 

  82. Lee YK, Park J, Park JY (2012) The effect of dye molecules and surface plasmons in photon-induced hot electron flows detected on Au/TiO2 nanodiodes. J Phys Chem C 116:18591–18596

    CAS  Google Scholar 

  83. Lee YK, Lee J, Lee H, Lee JY, Park JY (2013) Probing polarization modes of Ag nanowires with hot electron detection on Au/TiO2 nanodiodes. Appl Phys Lett 102:123112

    Google Scholar 

  84. Somorjai GA, Bratlie KM, Montano MO, Park JY (2006) Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons. J Phys Chem B 110:20014–20022

    CAS  Google Scholar 

  85. Ji XZ, Somorjai GA (2005) Continuous hot electron generation in Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes from oxidation of carbon monoxide. J Phys Chem B 109:22530–22535

    CAS  Google Scholar 

  86. Shen TC, Wang C, Abeln GC, Tucker JR, Lyding JW, Avouris P, Walkup RE (1995) Atomic-scale desorption through electronic and vibrational-excitation mechanisms. Science 268:1590–1592

    CAS  Google Scholar 

  87. Fomin E, Tatarkhanov M, Mitsui T, Rose M, Ogletree DF, Salmeron M (2006) Vibrationally assisted diffusion of H2O and D2O on Pd(111). Surf Sci 600:542–546

    CAS  Google Scholar 

  88. Choi BY, Kahng SJ, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys Rev Lett 96:156106

    Google Scholar 

  89. Henzl J, Mehlhorn M, Gawronski H, Rieder KH, Morgenstern K (2006) Reversible cis-trans isomerization of a single azobenzene molecule. Angew Chem Int Ed 45:603–606

    CAS  Google Scholar 

  90. Gadzuk JW (1996) Resonance-assisted, hot electron femtochemistry at surfaces. Phys Rev Lett 76:4234–4237

    CAS  Google Scholar 

  91. Saunders AE, Popov I, Banin U (2006) Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B 110:25421–25429

    CAS  Google Scholar 

  92. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 4:855–863

    CAS  Google Scholar 

  93. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790

    CAS  Google Scholar 

  94. Milliron DJ, Hughes SM, Cui Y, Manna L, Li JB, Wang LW, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195

    CAS  Google Scholar 

  95. Kuo HS, Hwang IS, Fu TY, Wu JY, Chang CC, Tsong TT (2004) Preparation and characterization of single-atom tips. Nano Lett 4:2379–2382

    CAS  Google Scholar 

  96. Kim SM, Lee SJ, Kim SH, Kwon S, Yee KJ, Song H, Somorjai GA, Park JY (2013) Hot carrier-driven catalytic reactions on Pt-CdSe-Pt nanodumbbells and Pt/GaN under light irradiation. Nano Lett 13:1352–1358

    CAS  Google Scholar 

  97. Schafer S, Wyrzgol SA, Caterino R, Jentys A, Schoell SJ, Havecker M, Knop-Gericke A, Lercher JA, Sharp ID, Stutzmann M (2012) Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity. J Am Chem Soc 134:12528–12535

    Google Scholar 

  98. Kim SM, Park D, Yuk Y, Kim SH, Park JY (2013) Influence of hot carriers on catalytic reaction; Pt nanoparticles on GaN substrates under light irradiation. Faraday Discuss 162:355–364

    CAS  Google Scholar 

  99. Kim SH, Jung CH, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation. Appl Catal A-Gen 454:53–58

    CAS  Google Scholar 

  100. Qadir K, Kim SH, Kim SM, Ha H, Park JY (2012) Support effect of Arc plasma deposited Pt nanoparticles/TiO2 substrate on catalytic activity of CO oxidation. J Phys Chem C 116:24054–24059

    CAS  Google Scholar 

  101. Bonn M, Funk S, Hess C, Denzler DN, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285:1042–1045

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the WCU (World Class University, R-31-2008-000-10055-0) program, and 2012R1A2A1A01009249 through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (MEST) and by the Research Center Program (CA1201) of IBS (Institute for Basic Science) of Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, J.Y. (2014). Electronic Excitation on Surfaces During Chemical and Photon Processes. In: Park, J. (eds) Current Trends of Surface Science and Catalysis., vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8742-5_10

Download citation

Publish with us

Policies and ethics