Bridging Materials and Pressure Gaps in Surface Science and Heterogeneous Catalysis

  • Jeong Young Park
  • Gabor A. Somorjai


Over the last several decades, surface science has undergone revolutionary advances that reveal the atomic- and molecular-level structural, dynamic, compositional, and thermodynamic properties of surfaces that are utilized in chemical process development. Adsorption and reaction rates and catalytic selectivity are also better understood, making the design of surfaces that deliver desired chemical properties possible. In this book, we highlight recent works in surface science and catalysis with an emphasis on the development of new catalytic model systems and in situ spectroscopic and microscopic techniques for applications in energy and environmental engineering. Colloid nanoparticle synthesis provides new opportunities to tune catalytic activity and selectivity via synthetic control of the size, composition, and shape of nanoparticles. Metal-oxide interfaces are catalytically active, suggesting the tunability of catalytic activity via engineering of metal-oxide interfaces. Energy conversion from photon or chemical energy to electrical energy has been studied via utilization of hot electron flows with metal–semiconductor nanodiodes. New in situ microscopic and spectroscopic techniques have been developed to uncover the atomic structure, mobility, reaction intermediates, and oxidation states that determine catalytic activity and selectivity. Breakthroughs in these research topics can help in the smart design of catalytic and energy materials with better performance and lower cost and may lead to new methods for renewable energy conversion.


Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Oxide Interface Surface Science Single Crystal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  2. 2.
    Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, vol 8. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Ertl G, Freund HJ (1999) Catalysis and surface science. Phys Today 52:32–38CrossRefGoogle Scholar
  4. 4.
    Freund HJ et al (2001) Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top Catal 15:201–209CrossRefGoogle Scholar
  5. 5.
    Somorjai GA, York RL, Butcher D, Park JY (2007) The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(−3) torr) to high pressure (>10(−3) torr) to liquid interfaces. Phys Chem Chem Phys 9:3500–3513. doi: 10.1039/b618805b CrossRefGoogle Scholar
  6. 6.
    Somorjai GA, Park JY (2008) Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem Soc Rev 37:2155–2162. doi: 10.1039/b719148k CrossRefGoogle Scholar
  7. 7.
    Somorjai GA, Park JY (2007) Frontiers of surface science. Phys Today 60:48–53CrossRefGoogle Scholar
  8. 8.
    Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties. Surf Sci Rep 27:1–111CrossRefGoogle Scholar
  9. 9.
    Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) Pt nanocrystals: shape control and langmuir-blodgett monolayer formation. J Phys Chem B 109:188–193CrossRefGoogle Scholar
  10. 10.
    Grass ME et al (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896. doi: 10.1002/anie.200803574 CrossRefGoogle Scholar
  11. 11.
    Zhang Y et al (2007) One-step polyol synthesis and langmuir-blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. J Phys Chem C 111:12243–12253CrossRefGoogle Scholar
  12. 12.
    Lee H et al (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed 45:7824–7828CrossRefGoogle Scholar
  13. 13.
    Joo SH et al (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713. doi: 10.1021/nl101700j CrossRefGoogle Scholar
  14. 14.
    Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles. Nano Lett 8:673–677. doi: 10.1021/nl073195i CrossRefGoogle Scholar
  15. 15.
    Park JY, Zhang Y, Joo SH, Jung Y, Somorjai GA (2012) Size effect of RhPt bimetallic nanoparticles in catalytic activity of CO oxidation: role of surface segregation. Catal Today 181:133–137. doi: 10.1016/j.cattod.2011.05.031 CrossRefGoogle Scholar
  16. 16.
    Somorjai GA, Park JY (2008) Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity. Top Catal 49:126–135. doi: 10.1007/s11244-008-9077-0 CrossRefGoogle Scholar
  17. 17.
    Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46. doi: 10.1038/nchem.121 CrossRefGoogle Scholar
  18. 18.
    Somorjai GA, Park JY (2009) Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surf Sci 603:1293–1300. doi: 10.1016/j.susc.2008.08.030 CrossRefGoogle Scholar
  19. 19.
    Montano M, Bratlie K, Salmeron M, Somorjai GA (2006) Hydrogen and deuterium exchange on Pt(111) and its poisoning by carbon monoxide studied by surface sensitive high-pressure techniques. J Am Chem Soc 128:13229–13234. doi: 10.1021/ja063703a CrossRefGoogle Scholar
  20. 20.
    Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199CrossRefGoogle Scholar
  21. 21.
    Tao F et al (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934. doi: 10.1126/science.1164170 CrossRefGoogle Scholar
  22. 22.
    Park JY (2011) Tuning nanoscale friction on Pt nanoparticles with engineering of organic capping layer. Langmuir 27:2509–2513. doi: 10.1021/la104353f CrossRefGoogle Scholar
  23. 23.
    Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes. Nano Lett 9:3930–3933. doi: 10.1021/nl9023275 CrossRefGoogle Scholar
  24. 24.
    Nienhaus H (2002) Electronic excitations by chemical reactions on metal surfaces. Surf Sci Rep 45:3–78CrossRefGoogle Scholar
  25. 25.
    Park JY, Somorjai GA (2006) The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction. Chemphyschem 7:1409–1413CrossRefGoogle Scholar
  26. 26.
    Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605. doi: 10.1021/ja9061954 CrossRefGoogle Scholar
  27. 27.
    Lee YK et al (2011) Surface plasmon-driven hot electron flow probed with metal–semiconductor nanodiodes. Nano Lett 11:4251–4255. doi: 10.1021/nl2022459 CrossRefGoogle Scholar
  28. 28.
    Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47:9212–9228. doi: 10.1002/anie.200803181 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Graduate School of EEWS (WCU) and NanoCentury KIKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Center for Nanomaterials and Chemical ReactionsInstitute for Basic ScienceDaejeonSouth Korea
  3. 3.Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations