Selected Analysis Topics

  • David J. Larson
  • Ty J. Prosa
  • Robert M. Ulfig
  • Brian P. Geiser
  • Thomas F. Kelly
Chapter

Abstract

LEAP data analysis is performed using the CAMECA Integrated Visualization and Analysis Software (IVAS) package. IVAS was introduced in 2004 on a Windows XP® software platform based on Java™ and Netbeans and continues to require a Windows operating system environment. CAMECA offers several levels of licensing from free and short term use to permanent full versions. Through the years, IVAS development has closely followed a guiding principle that prioritizes ease of use and availability of unencrypted file formats so that analysis can be performed both with IVAS as well as user-developed software. Discussing all the features and concepts pertaining to IVAS would require a separate book (see the IVAS User Guide). Consequently, this chapter describes only some key IVAS topics and features useful for atom probe tomography (APT) practitioners. The features and topics addressed are in no particular order, but each should have some relevance for experienced and novice analysts alike.

Keywords

Nickel Chromium Arsenic Tungsten Expense 

References

  1. 1.
    Bevington, P.R., Robinson, K.D.: Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. McGraw-Hill Higher Education, New York, NY (2003)Google Scholar
  2. 2.
    Gedcke, D.A.: How histogramming and counting statistics affect peak position precision. ORTEC Application Note AN58 (2005)Google Scholar
  3. 3.
    Currie, L.A.: Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal. Chem. 40, 586–592 (1968)CrossRefGoogle Scholar
  4. 4.
    Miller, M.K., Cerezo, A., Hetherington, M.G., Smith, G.D.W.: Atom Probe Field Ion Microscopy. Oxford University Press, Oxford (1996)Google Scholar
  5. 5.
    Meier, P.C., Zünd, R.E.: Statistical Methods in Analytical Chemistry. Wiley, New York, NY (2005)Google Scholar
  6. 6.
    Boyd, R.K., Basic, C., Bethem, R.A.: Trace Quantitative Analysis by Mass Spectrometry. Wiley, West Sussex (2008)CrossRefGoogle Scholar
  7. 7.
    Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P.: Atom Probe Microscopy. Springer Series in Materials Science, vol. 160. Springer, New York, NY (2012)CrossRefGoogle Scholar
  8. 8.
    Gedcke, D.A.: How counting statistics controls detection limits and peak precision. ORTEC Application Note AN59 (2001).Google Scholar
  9. 9.
    Kelly, T.F.: Kinetic-energy discrimination for atom probe tomography. Microsc. Microanal. 17, 1–14 (2011)CrossRefGoogle Scholar
  10. 10.
    Hellman, O.C., Rivage, J.B., Seidman, D.N.: Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199–205 (2003)CrossRefGoogle Scholar
  11. 11.
    Lopes, A., Bordlie, K.: Interactive approaches to contouring and isosurfaces for geovisualization. In: Dykes, J., MacEachren, A.M., Draak, M.J. (eds.) Exploring Geovisualization, p. 345. Elsevier, London, UK (2005)CrossRefGoogle Scholar
  12. 12.
    O’Neill, R.W., Larson, D.J., Thompson, K., Kunicki, T.C., Geiser, B.P.: Measuring the roughness of buried interfaces in nanostructures by local electrode atom probe analysis. Microsc. Microanal. 12(S2), 1746CD–1748CD (2006)CrossRefGoogle Scholar
  13. 13.
    Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444 (2000)Google Scholar
  14. 14.
    Hyde, J.M., English, C.A.: An analysis of the structure of irradiation induced Cu-enriched clusters in low and high nickel welds. MRS Symp. Proc. 650(R6.6), R6.6.1–R6.6.12 (2000)Google Scholar
  15. 15.
    Vaumousse, D., Cerezo, A., Warren, P.J.: A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. Ultramicroscopy 95, 215–221 (2003)CrossRefGoogle Scholar
  16. 16.
    Heinrich, A., Al-Kassab, T., Kircheim, R.: Investigation of the early stages of decomposition of Cu-0.7%at.% Fe with the tomographic atom probe. Mater. Sci. Eng. A 353(1–2), 92–98 (2003)CrossRefGoogle Scholar
  17. 17.
    Stephenson, L.T., Moody, M.P., Ringer, S.P.: Techniques for the analysis of clusters and aggregations within atom probe tomography data. Microsc. Microanal. 12(S2), 1732CD–1733CD (2006)CrossRefGoogle Scholar
  18. 18.
    Cerezo, A., Davin, L.: Aspects of the observation of clusters in the 3-dimensional atom probe. Surf. Interface Anal. 39(2–3), 184–188 (2007)CrossRefGoogle Scholar
  19. 19.
    Ceguerra, A.V., Moody, M.P., Stephenson, L.T., Ringer, S.P.: Analysis techniques for nanoscale solute clustering in atom probe tomography. Microsc. Microanal. 13(S2), 1602–1603 (2007)Google Scholar
  20. 20.
    Serizawa, A., Miller, M.K.: Influence of analysis parameters on the microstructural characterization of nanoscale precipitates. MRS Symp. Proc. 1231, 19–25 (2010)Google Scholar
  21. 21.
    Stephenson, L.T., Moody, M.P., Gault, B., Ringer, S.P.: Estimating the physical cluster-size distribution within materials using atom-probe. Microsc. Res. Tech. 74(9), 799–803 (2011). doi: 10.1002/jemt.20958 Google Scholar
  22. 22.
    Stephenson, L.T., Moody, M.P., Ringer, S.P.: Theory of solute clustering in materials for atom probe. Phil. Mag. 91, 2200 (2011). http://dx.doi.org/10.1080/14786435.2011.554909CrossRefGoogle Scholar
  23. 23.
    Marquis, E.A., Hyde, J.M.: Applications of atom-probe tomography to the characterisation of solute behaviours. Mater. Sci. Eng. R Rep. 69(4–5), 37–62 (2010)CrossRefGoogle Scholar
  24. 24.
    Stephenson, L.T., Moody, M.P., Liddicoat, P.V., Ringer, S.P.: New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data. Microsc. Microanal. 13, 448–463 (2007)CrossRefGoogle Scholar
  25. 25.
    Hyde, J.M., Marquis, E.A., Wilford, K.B., Williams, T.J.: A sensitivity analysis of the maximum separation method for the characterisation of solute clusters. Ultramicroscopy 111(6), 440–447 (2011). doi: 10.1016/j.ultramic.2010.12.015 CrossRefGoogle Scholar
  26. 26.
    Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J., Roberts, J.P.: Spatial distribution maps for atom probe tomography. Microsc. Microanal. 13, 437–447 (2007)CrossRefGoogle Scholar
  27. 27.
    Boll, T., Al-Kassab, T., Yuan, Y., Liu, Z.G.: Investigation of the site occupation of atoms in pure and doped TiAl/Ti3Al intermetallic. Ultramicroscopy 107(9), 796–801 (2007)CrossRefGoogle Scholar
  28. 28.
    Fultz, B., Howe, J.: Transmission Electron Microscopy and Diffractometry of Materials. Springer, New York, NY (2013)CrossRefGoogle Scholar
  29. 29.
    Camus, P.P., Larson, D.J., Kelly, T.F.: A method for reconstructing and locating atoms on the crystal lattice in three-dimensional atom probe data. Appl. Surf. Sci. 87/88, 305–310 (1995)CrossRefGoogle Scholar
  30. 30.
    Cerezo, A., Abraham, M., Lane, H., Larson, D.J., Thuvander, M., Seto, K., Warren, P.J., Smith, G.D.W.: Three-dimensional atomic scale analysis of interfaces. Paper presented at the Electron Microscopy and Analysis Group Conf. EMAG99, Sheffield, UK, 1999Google Scholar
  31. 31.
    Vurpillot, F., Da Costa, G., Menand, A., Blavette, D.: Structural analyses in three-dimensional atom probe: a Fourier transform approach. J. Microsc. 203(3), 295–302 (2001)CrossRefGoogle Scholar
  32. 32.
    Vurpillot, F., Renaud, L., Blavette, D.: A new step towards the lattice reconstruction in 3DAP. Ultramicroscopy 95, 223–229 (2003)CrossRefGoogle Scholar
  33. 33.
    Warren, P.J., Cerezo, A., Smith, G.: Towards 3D lattice reconstruction with the position sensitive atom probe. Microsc. Microanal. 4(S2), 86–87 (1998)Google Scholar
  34. 34.
    Vurpillot, F., Geuser, F.D., Costa, G.D., Blavette, D.: Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. J. Microsc. 216, 234 (2004)CrossRefGoogle Scholar
  35. 35.
    Moody, M.P., Gault, B., Stephenson, L.T., Ringer, S.P.: Applications of spatial distribution maps for advanced atom probe reconstruction and data analysis. Microsc. Microanal. 15(S2), 246–247 (2009)CrossRefGoogle Scholar
  36. 36.
    Suram, S.K., Rajan, K.: Refining spatial distribution maps for atom probe tomography via data dimensionality reduction methods. Microsc. Today 18(5), 941–952 (2012)Google Scholar
  37. 37.
    Marquis, E.A., Geiser, B.P., Hekmaty, M.A., Larson, D.J.: Application of spatial distribution mapping to the investigation of alloys. Microsc. Microanal. 13(S2), 196–197 (2007)Google Scholar
  38. 38.
    Seidman, D.N., Marquis, E.A., Dunand, D.C.: Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 50, 4021–4035 (2002)CrossRefGoogle Scholar
  39. 39.
    Larson, D.J., Kelly, T.F.: Nanoscale analysis of materials using a local-electrode atom probe. Microsc. Anal. 78, 59–62 (2006)Google Scholar
  40. 40.
    Stallybrass, C., Sauthoff, G.: Ferritic Fe–Al–Ni–Cr alloys with coherent precipitates for high-temperature applications. Mater. Sci. Eng. 387–389, 985–990 (2004)CrossRefGoogle Scholar
  41. 41.
    Larson, D.J., Prosa, T.J., Kostrna, S.L.P., Ali, M., Kelly, T.F., Stallybrass, S., Schneider, A., Sauthoff, G., Degass, J.: Local electrode atom probe study of phase transformations in an Fe-Al-Ni-Cr alloy. Microsc. Microanal. 12(S2), 968CD–970CD (2006)CrossRefGoogle Scholar
  42. 42.
    Al-Kassab, T., Yuan, Y., Kluthe, C., Boll, T., Liu, Z.-G.: Investigation of the ordering and atomic site occupancies of Nb-Doped TiAl/Ti3Al intermetallics. Surf. Interface Anal. 39(2–3), 257–261 (2007)CrossRefGoogle Scholar
  43. 43.
    Yang, R., Hao, Y.L., Song, Y., Guo, Z.X.: Site occupancy of alloying additions in titanium aluminides and its application to phase equilibrium evaluation. Zeitschrift Fur Metallkunde 91(4), 296–301 (2000)Google Scholar
  44. 44.
    Hao, Y.L., Yang, R., Cui, Y.Y., Li, D.: The influence of alloying on the alpha(2)/(alpha(2) + gamma)/gamma phase boundaries in TiAl based systems. Acta Mater. 48(6), 1313–1324 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David J. Larson
    • 1
  • Ty J. Prosa
    • 1
  • Robert M. Ulfig
    • 1
  • Brian P. Geiser
    • 1
  • Thomas F. Kelly
    • 1
  1. 1.CAMECA Instruments, Inc.MadisonUSA

Personalised recommendations