Advertisement

Regression Analysis of Panel Count Data I

  • Jianguo Sun
  • Xingqiu Zhao
Chapter
Part of the Statistics for Biology and Health book series (SBH, volume 80)

Abstract

This chapter discusses regression analysis of panel count data. As discussed before, unlike recurrent event data, panel count data involve an extra observation process and this observation process may be independent of or could be related to the underlying recurrent event process of interest. In this chapter, we consider the situation where the two processes are independent of each other completely or conditionally given covariates. The situation where the two processes are related is investigated in the next chapter.

Keywords

Estimation Procedure Regression Parameter Recurrent Event Observation Process Current Status Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes. Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  2. Barlow, R., Bartholomew, D., Bremner, J. and Brunk, H. (1972). Statistical inference under order restrictions. New York: John Wiley.MATHGoogle Scholar
  3. Cheng, G., Zhang, Y. and Lu, L. (2011). Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data. Journal of Nonparametric Statistics, 23, 567–579.MathSciNetCrossRefMATHGoogle Scholar
  4. Cheng, S. C. and Wei, L. J. (2000). Inferences for a semiparametric model with panel data. Biometrika, 87, 89–97.MathSciNetCrossRefMATHGoogle Scholar
  5. Cook, R. J. and Lawless, J. F. (2007). The statistical analysis of recurrent events. Springer-Verlag, New York.MATHGoogle Scholar
  6. Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B, 34, 187–220.MATHGoogle Scholar
  7. Diggle, P. J., Liang, K. Y. and Zeger, S. L. (1994). The analysis of longitudinal data. Oxford University Press, New YorkGoogle Scholar
  8. Fleming, T. R. and Harrington, D. P. (1991). Counting process and survival analysis. John Wiley: New York.Google Scholar
  9. He, X. (2007). Semiparametric analysis of panel count data. Ph.D. Dissertation, University of Missouri, Columbia.Google Scholar
  10. Hu, X. J., Sun, J. and Wei, L. J. (2003). Regression parameter estimation from panel counts. Scand. Journal of Statistics, 30, 25–43.MathSciNetCrossRefMATHGoogle Scholar
  11. Jamshidian, M. (2004). On algorithms for restricted maximum likelihood estimation. Computational Statistics and data Analysis, 45, 137–157.MathSciNetCrossRefMATHGoogle Scholar
  12. Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure time data. Second edition, John Wiley: New York.CrossRefMATHGoogle Scholar
  13. Lawless, J. F. (1987a). Regression methods for Poisson process data. Journal of the American Statistical Association, 82, 808–815.MathSciNetCrossRefMATHGoogle Scholar
  14. Lawless, J. F. and Nadeau, J. C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics, 37, 158–168.MathSciNetCrossRefMATHGoogle Scholar
  15. Lawless, J. F. and Zhan, M. (1998). Analysis of interval-grouped recurrent-event data using piecewise constant rate functions. Canadian Journal of Statistics, 26, 549–565.CrossRefMATHGoogle Scholar
  16. Li, N., Sun, L. and Sun, J. (2010). Semiparametric transformation models for panel count data with dependent observation processes. Statistics in Biosciences, 2, 191–210.CrossRefGoogle Scholar
  17. Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of Royal Statistical Society Ser B, 62, 711–730.MathSciNetCrossRefMATHGoogle Scholar
  18. Lin, D. Y., Wei, L. J. and Ying, Z. (2001). Semiparametric transformation models for point processes. Journal of the American Statistical Association, 96, 620–628.MathSciNetCrossRefMATHGoogle Scholar
  19. Lu, M., Zhang, Y. and Huang, J. (2009). Semiparametric estimation methods for panel count data using monotone B-splines. Journal of the American Statistical Association, 104, 1060–1070.MathSciNetCrossRefGoogle Scholar
  20. Nielsen, J. D. and Dean, C. B. (2008). Clustered mixed nonhomogeneous Poisson process spline models for the analysis of recurrent event panel data. Biometrics, 64, 751–761.MathSciNetCrossRefMATHGoogle Scholar
  21. Robertson, T., Wright, F. T. and Dykstra, R. (1988). Order restricted statistical inference. John Wiley & Sons, New York.MATHGoogle Scholar
  22. Schumaker, L. (1981). Spline functions: Basic theory. New York: Wiley.MATHGoogle Scholar
  23. Staniswalls, J. G., Thall, P. F. and Salch, J. (1997). Semiparametric regression analysis for recurrent event interval counts. Biometrics, 53, 1334–1353.MathSciNetCrossRefGoogle Scholar
  24. Sun, J. and Matthews, D. E. (1997). A random-effect regression model for medical follow-up studies. Canadian Journal of Statistics, 25, 101–111.MathSciNetCrossRefMATHGoogle Scholar
  25. Sun, J., Sun, L. and Liu, D. (2007a). Regression analysis of longitudinal data in the presence of informative observation and censoring times. Journal of the American Statistical Association, 102, 1397–1406.MathSciNetCrossRefMATHGoogle Scholar
  26. Sun, J. and Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. Journal of the Royal Statistical Society, Series B, 62, 293–302.MathSciNetCrossRefGoogle Scholar
  27. Sun, Y. (2010). Estimation of semiparametric regression model with longitudinal data. Lifetime Data Analysis, 16, 271–298.MathSciNetCrossRefGoogle Scholar
  28. Vermunt, J. K. (1997). Log-linear models for event histories. Sage Publications Inc: Newbury Park, CA.Google Scholar
  29. Wellner, J. A. and Zhang, Y. (2007). Two likelihood-based semiparametric estimation methods for panel count data with covariates. The Annals of Statistics, 35, 2106–2142.MathSciNetCrossRefMATHGoogle Scholar
  30. Wellner, J. A., Zhang, Y. and Liu, H. (2004). A semiparametric regression model for panel count data: when do pseudo-likelihood estimators become badly inefficient? Proceedings of the Second Seattle Symposium in Biostatistics, Springer, New York, 143–174.Google Scholar
  31. Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika, 89, 39–48.MathSciNetCrossRefMATHGoogle Scholar
  32. Zhang, Y. and Jamshidian, M. (2004). On algorithms for NPMLE of the failure function with censored data. Journal of Computational and Graphical Statistics, 13, 123–140.MathSciNetCrossRefGoogle Scholar
  33. Zhang, Z., Sun, L., Zhao, X. and Sun, J. (2005). Regression analysis of interval censored failure time data with linear transformation models. The Canadian Journal of Statistics, 33, 61–70.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jianguo Sun
    • 1
  • Xingqiu Zhao
    • 2
  1. 1.Department of StatisticsUniversity of MissouriColumbiaUSA
  2. 2.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHong KongHong Kong SAR

Personalised recommendations