Skip to main content

Bedside Monitoring of Vascular Mechanisms in CNS Trauma: The Use of Near-Infrared Spectroscopy (NIRS) and Transcranial Doppler (TCD)

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

Ischemia and adequacy of regional and global cerebral blood flow are important determinants of outcome in traumatic brain injury (TBI). Although brain ischemia may be a major common pathway of secondary brain damage following TBI, hyperemia and reperfusion injury may also occur and lead to elevated intracranial pressure and decreased cerebral perfusion pressure. Bedside monitors of cerebral ischemia include near-infrared spectroscopy (NIRS), transcranial Doppler ultrasound (TCD), continuous electroencephalography, and brain tissue microdialysis. This chapter will describe how NIRS and TCD enhance our understanding of vascular pathology following a brain injury and their potential applications in the acute management of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    PubMed  CAS  Google Scholar 

  2. Aaslid R et al (1989) Cerebral autoregulation dynamics in humans. Stroke 20(1):45–52

    PubMed  CAS  Google Scholar 

  3. Alexandrov AV et al (2012) Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes. J Neuroimaging 22(3):215–224

    PubMed  Google Scholar 

  4. Allendoerfer J et al (2006) Prognostic relevance of ultra-early Doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 5(10):835–840

    PubMed  Google Scholar 

  5. Ancora G et al (2013) Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study. Brain Dev 35(1):26–31

    PubMed  Google Scholar 

  6. Aslin RN (2012) Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cogn Neuropsychol 29(1–2):7–33

    PubMed  Google Scholar 

  7. Bardt TF et al (1998) Multimodal cerebral monitoring in comatose head-injured patients. Acta Neurochir 140(4):357–365

    PubMed  CAS  Google Scholar 

  8. Behrens A et al (2010) Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 66(6):1050–1057

    PubMed  Google Scholar 

  9. Bellner J et al (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51; discussion 51

    Google Scholar 

  10. Bouzat P et al (2011) Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery 68(6):1603–1610

    PubMed  Google Scholar 

  11. Brady KM et al (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38(10):2818–2825

    PubMed  Google Scholar 

  12. Brawanski A et al (2002) Comparison of near-infrared spectroscopy and tissue p(O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 22(5):605–611

    PubMed  Google Scholar 

  13. Brazy JE et al (1985) Monitoring of cerebral oxygenation in the intensive care nursery. Adv Exp Med Biol 191:843–848

    PubMed  CAS  Google Scholar 

  14. Cerussi A et al (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005

    PubMed  Google Scholar 

  15. Chan KH et al (1992) The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg 77(1):55–61

    PubMed  CAS  Google Scholar 

  16. Chang T, Plessis A (2012) Neurodiagnostic techniques in neonatal critical care. Curr Neurol Neurosci Rep 12(2):145–152

    PubMed  Google Scholar 

  17. Creteur J et al (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33(9):1549–1556

    PubMed  Google Scholar 

  18. Custo A et al (2010) Anatomical atlas-guided diffuse optical tomography of brain activation. Neuroimage 49(1):561–567

    PubMed  Google Scholar 

  19. Czosnyka M et al (2001) Cerebral autoregulation following head injury. J Neurosurg 95(5):756–763

    PubMed  CAS  Google Scholar 

  20. Daboussi A et al (2009) Cerebral hemodynamic changes in severe head injury patients undergoing decompressive craniectomy. J Neurosurg Anesthesiol 21(4):339–345

    PubMed  Google Scholar 

  21. Dagal A, Lam AM (2011) Cerebral blood flow and the injured brain: how should we monitor and manipulate it? Curr Opin Anaesthesiol 24(2):131–137

    PubMed  Google Scholar 

  22. Dent CL et al (2006) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 131(1):190–197

    PubMed  Google Scholar 

  23. Diedler J et al (2011) The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity. Anesth Analg 113(4):849–857

    PubMed  Google Scholar 

  24. Doerschug KC et al (2007) Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol 293(2):H1065–H1071

    PubMed  CAS  Google Scholar 

  25. Dunham CM et al (2002) Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: a pilot study. J Trauma 52(1):40–46

    PubMed  Google Scholar 

  26. Dunham CM et al (2006) Severe brain injury ICU outcomes are associated with Cranial-Arterial Pressure Index and noninvasive Bispectral Index and transcranial oxygen saturation: a prospective, preliminary study. Crit Care 10(6):R159

    PubMed  Google Scholar 

  27. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2):921–935

    PubMed  Google Scholar 

  28. Ferrari M et al (1985) Continuous non invasive monitoring of human brain by near infrared spectroscopy. Adv Exp Med Biol 191:873–882

    PubMed  CAS  Google Scholar 

  29. Figaji AA et al (2009) Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 72(4):389–394

    PubMed  Google Scholar 

  30. Germon TJ et al (1999) Cerebral near infrared spectroscopy: emitter-detector separation must be increased. Br J Anaesth 82(6):831–837

    PubMed  CAS  Google Scholar 

  31. Gervain J et al (2011) Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci 1(1):22–46

    PubMed  Google Scholar 

  32. Giustiniano E et al (2010) Cerebral oximetry during carotid clamping: is blood pressure raising necessary? J Cardiovasc Med (Hagerstown) 11(7):522–528

    Google Scholar 

  33. Goldman S et al (2004) Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 7(5):E376–E381

    PubMed  Google Scholar 

  34. Gopinath SP et al (1995) Early detection of delayed traumatic intracranial hematomas using near-infrared spectroscopy. J Neurosurg 83(3):438–444

    PubMed  CAS  Google Scholar 

  35. Hirsch JC et al (2010) Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13(1):51–54

    PubMed  Google Scholar 

  36. Hlatky R et al (2002) Dynamic autoregulatory response after severe head injury. J Neurosurg 97(5):1054–1061

    PubMed  Google Scholar 

  37. Hoshi Y, Tamura M (1993) Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 75(4):1842–1846

    PubMed  CAS  Google Scholar 

  38. Ing RJ et al (2004) Detection of unintentional partial superior vena cava occlusion during a bidirectional cavopulmonary anastomosis. J Cardiothorac Vasc Anesth 18(4):472–474

    PubMed  Google Scholar 

  39. Ito H et al (2005) Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 25(7):852–857

    PubMed  Google Scholar 

  40. Jaffres P et al (2005) Transcranial Doppler to detect on admission patients at risk for neurological deterioration following mild and moderate brain trauma. Intensive Care Med 31(6):785–790

    PubMed  Google Scholar 

  41. Jöbsis FF (1977) Non-invasive, infra-red monitoring of cerebral O2 sufficiency, bloodvolume, HbO2-Hb shifts and bloodflow. Acta Neurol Scand Suppl 64:452–453

    PubMed  Google Scholar 

  42. Kahraman S et al (2006) The accuracy of near-infrared spectroscopy in detection of subdural and epidural hematomas. J Trauma 61(6):1480–1483

    PubMed  Google Scholar 

  43. Kampfl A et al (1997) Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. A pilot study. Acta Neurochir Suppl 70:112–114

    PubMed  CAS  Google Scholar 

  44. Kassab MY et al (2007) Transcranial Doppler: an introduction for primary care physicians. J Am Board Fam Med 20(1):65–71

    PubMed  Google Scholar 

  45. Keyrouz SG, Diringer MN (2007) Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 11(4):220

    PubMed  Google Scholar 

  46. Komiyama T et al (2000) Near-infrared spectroscopy grades the severity of intermittent claudication in diabetics more accurately than ankle pressure measurement. Br J Surg 87(4):459–466

    PubMed  CAS  Google Scholar 

  47. Kussman BD et al (2009) Cerebral oximetry during infant cardiac surgery: evaluation and relationship to early postoperative outcome. Anesth Analg 108(4):1122–1131

    PubMed  Google Scholar 

  48. Lang EW et al (2003) Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma 20(1):69–75

    PubMed  Google Scholar 

  49. Lee JH et al (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 87(2):221–233

    PubMed  CAS  Google Scholar 

  50. Lee JK et al (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40(5):1820–1826

    PubMed  Google Scholar 

  51. Lindegaard KF et al (1987) Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke 18(6):1025–1030

    PubMed  CAS  Google Scholar 

  52. Mahony PJ et al (2000) Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation. Stroke 31(2):476–480

    PubMed  CAS  Google Scholar 

  53. Maki A et al (1995) Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys 22(12):1997–2005

    PubMed  CAS  Google Scholar 

  54. Marshall SA, Nyquist P, Ziai WC (2010) The role of transcranial Doppler ultrasonography in the diagnosis and management of vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21(2):291–303

    PubMed  Google Scholar 

  55. Martin NA et al (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87(1):9–19

    PubMed  CAS  Google Scholar 

  56. Mascia L et al (2003) The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 29(7):1088–1094

    PubMed  CAS  Google Scholar 

  57. Matcher SJ et al (1995) Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem 227(1):54–68

    PubMed  CAS  Google Scholar 

  58. McCarville MB (2008) Comparison of duplex and nonduplex transcranial Doppler ultrasonography. Ultrasound Q 24(3):167–171

    PubMed  Google Scholar 

  59. McCormick PW et al (1992) Intracerebral penetration of infrared light. Technical note. J Neurosurg 76(2):315–318

    PubMed  CAS  Google Scholar 

  60. Melo JRT et al (2011) Transcranial Doppler can predict intracranial hypertension in children with severe traumatic brain injuries. Childs Nerv Syst 27(6):979–984

    PubMed  Google Scholar 

  61. Mille T et al (2004) Near infrared spectroscopy monitoring during carotid endarterectomy: which threshold value is critical? Eur J Vasc Endovasc Surg 27(6):646–650

    PubMed  CAS  Google Scholar 

  62. Moppett IK et al (2008) Effects of norepinephrine and glyceryl trinitrate on cerebral haemodynamics: transcranial Doppler study in healthy volunteers. Br J Anaesth 100(2):240–244

    PubMed  CAS  Google Scholar 

  63. Moritz S et al (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107(4):563–569

    PubMed  Google Scholar 

  64. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103(suppl 1):i3–i13

    PubMed  Google Scholar 

  65. Murkin JM et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104(1):51–58

    PubMed  Google Scholar 

  66. Narotam PK, Morrison JF, Nathoo N (2009) Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg 111(4):672–682

    PubMed  Google Scholar 

  67. O’Brien NF et al (2010) Vasospasm in children with traumatic brain injury. Intensive Care Med 36(4):680–687

    PubMed  Google Scholar 

  68. Oertel M et al (2005) Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 103(5):812–824

    PubMed  Google Scholar 

  69. Ohmae E et al (2006) Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage 29(3):697–705

    PubMed  Google Scholar 

  70. Pennekamp CWA et al (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38(5):539–545

    PubMed  CAS  Google Scholar 

  71. Philip S et al (2009) Cerebrovascular pathophysiology in pediatric traumatic brain injury. J Trauma 67(suppl):S128–S134

    PubMed  CAS  Google Scholar 

  72. Ract C et al (2007) Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med 33(4):645–651

    PubMed  Google Scholar 

  73. Rao GSU, Durga P (2011) Changing trends in monitoring brain ischemia. Curr Opin Anaesthesiol 24(5):487–494

    PubMed  Google Scholar 

  74. Rasulo FA, De Peri E, Lavinio A (2008) Transcranial Doppler ultrasonography in intensive care. Eur J Anaesthesiol Suppl 42:167–173

    PubMed  CAS  Google Scholar 

  75. Reinhard M et al (2010) Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med 36(2):264–271

    PubMed  Google Scholar 

  76. Safin AM et al (2007) [Cerebral circulatory disorders in varying brain injury, as evidenced by transcranial Doppler study]. Zh Vopr Neirokhir Im N N Burdenko 2:16–20

    PubMed  Google Scholar 

  77. Santora RJ, Moore FA (2009) Monitoring trauma and intensive care unit resuscitation with tissue hemoglobin oxygen saturation. Crit Care 13(suppl 5):S10

    PubMed  Google Scholar 

  78. Saqqur M, Zygun D, Demchuk A (2007) Role of transcranial Doppler in neurocritical care. Crit Care Med 35(suppl):S216–S223

    PubMed  Google Scholar 

  79. Schramm P et al (2011) Serial measurement of static and dynamic cerebrovascular autoregulation after brain injury. J Neurosurg Anesthesiol 23(1):41–44

    PubMed  Google Scholar 

  80. Schwartz ES et al (2010) Magnetoencephalography. Pediatr Radiol 40(1):50–58

    PubMed  Google Scholar 

  81. Sharples PM et al (1995) Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58(2):145–152

    PubMed  CAS  Google Scholar 

  82. Silvestrini M et al (2000) Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283(16):2122–2127

    PubMed  CAS  Google Scholar 

  83. Skarda DE et al (2007) Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock 27(4):348–353

    PubMed  CAS  Google Scholar 

  84. Steiner LA et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30(4):733–738

    PubMed  Google Scholar 

  85. Steiner LA et al (2009) Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care 10(1):122–128

    PubMed  Google Scholar 

  86. Subbaswamy A et al (2009) Correlation of cerebral near-infrared spectroscopy (cNIRS) and neurological markers in critically ill children. Neurocrit Care 10(1):129–135

    PubMed  CAS  Google Scholar 

  87. Sviri GE et al (2009) Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg 111(4):695–700

    PubMed  Google Scholar 

  88. Tazarourte K (2010) Advocating for transcranial Doppler: a tool to detect early neurological deterioration. J Trauma 69(3):733–734

    PubMed  Google Scholar 

  89. Tiecks FP et al (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6):1014–1019

    PubMed  CAS  Google Scholar 

  90. Trabold F et al (2004) The prognostic value of transcranial Doppler studies in children with moderate and severe head injury. Intensive Care Med 30(1):108–112

    PubMed  Google Scholar 

  91. Tsivgoulis G, Alexandrov AV, Sloan MA (2009) Advances in transcranial Doppler ultrasonography. Curr Neurol Neurosci Rep 9(1):46–54

    PubMed  Google Scholar 

  92. van Bel F, Lemmers P, Naulaers G (2008) Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 94(4):237–244

    PubMed  Google Scholar 

  93. Varela JE et al (2001) Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery 129(3):363–370

    PubMed  CAS  Google Scholar 

  94. Vavilala MS et al (2004) Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 5(3):257–263

    PubMed  Google Scholar 

  95. Vernieri F, Pasqualetti P, Diomedi M et al (2001) Cerebral hemodynamics in patients with carotid artery occlusion and contralateral moderate or severe internal carotid artery stenosis. J Neurosurg 94(4):559–564

    PubMed  CAS  Google Scholar 

  96. Vernieri F, Pasqualetti P, Matteis M et al (2001) Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke 32(7):1552–1558

    PubMed  CAS  Google Scholar 

  97. Visocchi M et al (2007) Haemodynamic patterns in children with posttraumatic diffuse brain swelling. A preliminary study in 6 cases with neuroradiological features consistent with diffuse axonal injury. Acta Neurochir 149(4):347–356

    PubMed  CAS  Google Scholar 

  98. Vohra HA, Modi A, Ohri SK (2009) Does use of intra-operative cerebral regional oxygen saturation monitoring during cardiac surgery lead to improved clinical outcomes? Interact Cardiovasc Thorac Surg 9(2):318–322

    PubMed  Google Scholar 

  99. Watzman HM et al (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93(4):947–953

    PubMed  CAS  Google Scholar 

  100. Weatherall A et al (2012) Feasibility of cerebral near-infrared spectroscopy monitoring in the pre-hospital environment. Acta Anaesthesiol Scand 56(2):172–177

    PubMed  CAS  Google Scholar 

  101. Wolf M, Greisen G (2009) Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate. Clin Perinatol 36(4):807–834

    PubMed  Google Scholar 

  102. Wyatt JS et al (1986) Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry. Lancet 2(8515):1063–1066

    PubMed  CAS  Google Scholar 

  103. Yoxall CW et al (1995) Measurement of cerebral venous oxyhemoglobin saturation in children by near-infrared spectroscopy and partial jugular venous occlusion. Pediatr Res 38(3):319–323

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Boas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murphy, S.A., Cummings, B.M., Boas, D.A., Noviski, N. (2014). Bedside Monitoring of Vascular Mechanisms in CNS Trauma: The Use of Near-Infrared Spectroscopy (NIRS) and Transcranial Doppler (TCD). In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics