Blood Genomics After Brain Ischemia, Hemorrhage, and Trauma

  • Da Zhi Liu
  • Glen C. Jickling
  • Boryana Stamova
  • Xinhua Zhan
  • Bradley P. Ander
  • Frank R. Sharp
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR, volume 5)

Abstract

Peripheral blood is routinely used for RNA expression studies. However, blood is a challenging tissue for studying gene expression due to the fact that blood has a variety of components, composed of plasma and multiple cell subsets (i.e., leukocytes, platelets, red blood cells). Most genome-wide expression studies of blood are based on analysis of leukocytes, because the leukocytes are able to recruit and migrate into the site of injury within the brain. Recently, circulating cell-free plasma RNAs have received more and more attentions for clinical applications, since increasing evidence supports that the release of RNA into plasma may be mediated by microvesicles and exosomes coming from cells undergoing necrosis and apoptosis, though the definite origin and release mechanisms of plasma RNA remain incompletely understood. Blood genomic studies will provide diagnostic, prognostic, and therapeutic markers and will advance our understanding of brain ischemia, hemorrhage, and trauma in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of these acute brain injuries.

Keywords

Ischemia Luminal Hypoglycemia Plasminogen 

References

  1. 1.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  2. 2.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945CrossRefGoogle Scholar
  3. 3.
    Pennisi E (2012) Genomics. ENCODE project writes eulogy for junk DNA. Science 337(6099):1159, 1161Google Scholar
  4. 4.
    Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929PubMedCrossRefGoogle Scholar
  5. 5.
    Yang B et al (2011) Using peripheral blood mRNA signature to distinguish between breast cancer and benign breast disease in non-conclusive mammography patients. Cancer Biol Ther 10(12):1235–1239Google Scholar
  6. 6.
    Olmos D et al (2012) Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol 13(11):1114–1124PubMedCrossRefGoogle Scholar
  7. 7.
    Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518PubMedCrossRefGoogle Scholar
  8. 8.
    Allegra A et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41(6):1897–1912PubMedGoogle Scholar
  9. 9.
    Sharp FR et al (2011) Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. J Cereb Blood Flow Metab 31(7):1513–1531PubMedCrossRefGoogle Scholar
  10. 10.
    Bolen CR, Uduman M, Kleinstein SH (2011) Cell subset prediction for blood genomic studies. BMC Bioinformatics 12:258PubMedCrossRefGoogle Scholar
  11. 11.
    WTS Prohibited Blood Components. http://www.ajwrb.org/science/prohibit.html
  12. 12.
    Autissier P et al (2010) Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A 77(5):410–419PubMedGoogle Scholar
  13. 13.
    Schlenke P et al (1998) Evaluation of a novel mononuclear cell isolation procedure for serological HLA typing. Clin Diagn Lab Immunol 5(6):808–813PubMedGoogle Scholar
  14. 14.
    Franks ZG et al (2010) Platelet-leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke. Ann N Y Acad Sci 1207:11–17PubMedCrossRefGoogle Scholar
  15. 15.
    Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176(pt 1):1–40PubMedGoogle Scholar
  16. 16.
    Beck J et al (1997) Leukocyte-endothelium interactions in global cerebral ischemia. Acta Neurochir Suppl 70:53–55PubMedGoogle Scholar
  17. 17.
    Beck J et al (2007) Activation of leukocyte-endothelial interactions and reduction of selective neuronal death after global cerebral ischemia. Neurosci Lett 414(2):159–164PubMedCrossRefGoogle Scholar
  18. 18.
    Caplan LR, Fisher M (2007) The endothelium, platelets, and brain ischemia. Rev Neurol Dis 4(3):113–121PubMedGoogle Scholar
  19. 19.
    Htun P et al (2006) Course of platelet activation and platelet-leukocyte interaction in cerebrovascular ischemia. Stroke 37(9):2283–2287PubMedCrossRefGoogle Scholar
  20. 20.
    Clark WM et al (1993) Circulating intercellular adhesion molecule-1 levels and neutrophil adhesion in stroke. J Neuroimmunol 44(1):123–125PubMedCrossRefGoogle Scholar
  21. 21.
    Akopov S, Sercombe R, Seylaz J (1996) Cerebrovascular reactivity: role of endothelium/platelet/leukocyte interactions. Cerebrovasc Brain Metab Rev 8(1):11–94PubMedGoogle Scholar
  22. 22.
    Elneihoum AM et al (1996) Leukocyte activation detected by increased plasma levels of inflammatory mediators in patients with ischemic cerebrovascular diseases. Stroke 27(10):1734–1738PubMedCrossRefGoogle Scholar
  23. 23.
    Tang Y et al (2001) Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol 50(6):699–707PubMedCrossRefGoogle Scholar
  24. 24.
    Tang Y et al (2003) Blood genomic expression profile for neuronal injury. J Cereb Blood Flow Metab 23(3):310–319PubMedCrossRefGoogle Scholar
  25. 25.
    Tang Y et al (2002) Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur J Neurosci 15(12):1937–1952PubMedCrossRefGoogle Scholar
  26. 26.
    Moore DF et al (2005) Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation 111(2):212–221PubMedCrossRefGoogle Scholar
  27. 27.
    Turner RJ, Jickling GC, Sharp FR (2011) Are underlying assumptions of current animal models of human stroke correct: from STAIRs to high hurdles? Transl Stroke Res 2(2):138–143PubMedCrossRefGoogle Scholar
  28. 28.
    Chai V et al (2005) Optimization of the PAXgene blood RNA extraction system for gene expression analysis of clinical samples. J Clin Lab Anal 19(5):182–188PubMedCrossRefGoogle Scholar
  29. 29.
    Thach DC et al (2003) Assessment of two methods for handling blood in collection tubes with RNA stabilizing agent for surveillance of gene expression profiles with high density microarrays. J Immunol Methods 283(1–2):269–279PubMedCrossRefGoogle Scholar
  30. 30.
    Vartanian K et al (2009) Gene expression profiling of whole blood: comparison of target preparation methods for accurate and reproducible microarray analysis. BMC Genomics 10:2PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto T et al (2006) Examination of stability of bone marrow blood RNA in the PAXgene tube. Lab Hematol 12(3):143–147PubMedCrossRefGoogle Scholar
  32. 32.
    Tang Y et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26(8):1089–1102PubMedCrossRefGoogle Scholar
  33. 33.
    Stamova B et al (2010) Gene expression profiling of blood for the prediction of ischemic stroke. Stroke 41(10):2171–2177PubMedCrossRefGoogle Scholar
  34. 34.
    Barr TL et al (2010) Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology 75(11):1009–1014PubMedCrossRefGoogle Scholar
  35. 35.
    Xu H et al (2008) Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab 28(7):1320–1328PubMedCrossRefGoogle Scholar
  36. 36.
    Jickling GC et al (2010) Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol 68(5):681–692PubMedCrossRefGoogle Scholar
  37. 37.
    Jickling GC et al (2011) Profiles of lacunar and nonlacunar stroke. Ann Neurol 70(3):477–485PubMedCrossRefGoogle Scholar
  38. 38.
    Jickling GC et al (2012) Prediction of cardioembolic, arterial, and lacunar causes of cryptogenic stroke by gene expression and infarct location. Stroke 43(8):2036–2041PubMedCrossRefGoogle Scholar
  39. 39.
    Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838PubMedCrossRefGoogle Scholar
  40. 40.
    Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. Ann Med 40(3):197–208PubMedCrossRefGoogle Scholar
  41. 41.
    Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966PubMedCrossRefGoogle Scholar
  42. 42.
    Liu DZ et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101PubMedCrossRefGoogle Scholar
  43. 43.
    Tan KS et al (2009) Expression profile of MicroRNAs in young stroke patients. PLoS One 4(11):e7689PubMedCrossRefGoogle Scholar
  44. 44.
    Cerkovnik P et al (2007) Optimization of an RNA isolation procedure from plasma samples. Int J Mol Med 20(3):293–300PubMedGoogle Scholar
  45. 45.
    Tsui NB, Ng EK, Lo YM (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48(10):1647–1653PubMedGoogle Scholar
  46. 46.
    Tsang JC, Lo YM (2007) Circulating nucleic acids in plasma/serum. Pathology 39(2):197–207PubMedCrossRefGoogle Scholar
  47. 47.
    Gahan PB, Swaminathan R (2008) Circulating nucleic acids in plasma and serum. Recent developments. Ann N Y Acad Sci 1137:1–6PubMedCrossRefGoogle Scholar
  48. 48.
    Etheridge A et al (2011) Extracellular microRNA: a new source of biomarkers. Mutat Res 717(1–2):85–90PubMedCrossRefGoogle Scholar
  49. 49.
    Laterza OF et al (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55(11):1977–1983PubMedCrossRefGoogle Scholar
  50. 50.
    Balakathiresan N et al (2012) MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma 29(7):1379–1387PubMedCrossRefGoogle Scholar
  51. 51.
    Redell JB et al (2010) Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 27(12):2147–2156PubMedCrossRefGoogle Scholar
  52. 52.
    Du X et al (2006) Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and Tourette syndrome. Genomics 87(6):693–703PubMedCrossRefGoogle Scholar
  53. 53.
    Kobayashi SD, Sturdevant DE, DeLeo FR (2007) Genome-scale transcript analyses in human neutrophils. Methods Mol Biol 412:441–453PubMedCrossRefGoogle Scholar
  54. 54.
    Kotz KT et al (2010) Clinical microfluidics for neutrophil genomics and proteomics. Nat Med 16(9):1042–1047PubMedCrossRefGoogle Scholar
  55. 55.
    Robbins SH et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17PubMedCrossRefGoogle Scholar
  56. 56.
    Wong HR et al (2010) Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatr Crit Care Med 11(3):349–355PubMedGoogle Scholar
  57. 57.
    Holmes D et al (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9(20):2881–2889PubMedCrossRefGoogle Scholar
  58. 58.
    Lee D, Chen PJ, Lee GB (2010) The evolution of real-time PCR machines to real-time PCR chips. Biosens Bioelectron 25(7):1820–1824PubMedCrossRefGoogle Scholar
  59. 59.
    Shim JS, Browne AW, Ahn CH (2010) An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer. Biomed Microdevices 12(5):949–957PubMedCrossRefGoogle Scholar
  60. 60.
    Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486PubMedGoogle Scholar
  61. 61.
    Werner T (2010) Next generation sequencing in functional genomics. Brief Bioinform 11(5):499–511PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Da Zhi Liu
    • 1
  • Glen C. Jickling
    • 2
  • Boryana Stamova
    • 2
  • Xinhua Zhan
    • 2
  • Bradley P. Ander
    • 2
  • Frank R. Sharp
    • 2
  1. 1.Department of Neurology and the MIND InstituteUniversity of California at DavisSacramentoUSA
  2. 2.Department of Neurology and the MIND InstituteUniversity of California at DavisSacramentoUSA

Personalised recommendations