Skip to main content

Vascular Responses in Rodent Models of Traumatic Brain Injury

  • Chapter
  • First Online:
  • 1480 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. Among multiple confirmed pathological events after TBI, vascular response or cerebrovascular pathophysiology is one of the most important pathophysiological components of TBI, but its role and molecular mechanisms remain largely unknown. This chapter reviews experimental studies of cerebrovascular pathophysiology, especially in rodent TBI models. Clinically translational advantages and limitations of each commonly used rodent TBI models in the study of vascular responses are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25(7):719–738

    Article  PubMed  Google Scholar 

  2. Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12):596–604

    Article  PubMed  CAS  Google Scholar 

  3. Povlishock JT (2008) The classification of traumatic brain injury (tbi) for targeted therapies. J Neurotrauma 25(7):717–718

    Article  PubMed  Google Scholar 

  4. Adelson PD, Srinivas R, Chang Y, Bell M, Kochanek PM (2011) Cerebrovascular response in children following severe traumatic brain injury. Childs Nerv Syst 27(9):1465–1476

    Article  PubMed  Google Scholar 

  5. Lo EH (2008) Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol 153(Suppl 1):S396–S405

    PubMed  CAS  Google Scholar 

  6. Butcher I, Maas AI, Lu J, Marmarou A, Murray GD, Mushkudiani NA, McHugh GS, Steyerberg EW (2007) Prognostic value of admission blood pressure in traumatic brain injury: results from the impact study. J Neurotrauma 24(2):294–302

    Article  PubMed  Google Scholar 

  7. Rangel-Castilla L, Gasco J, Nauta HJ, Okonkwo DO, Robertson CS (2008) Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus 25(4):E7

    Article  PubMed  Google Scholar 

  8. Bitner BR, Marcano DC, Berlin JM, Fabian RH, Cherian L, Culver JC, Dickinson ME, Robertson CS, Pautler RG, Kent TA, Tour JM (2012) Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano 6(9):8007–8014

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, Sander D, Klingelhofer J (2003) Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke 34(1):84–89

    Article  PubMed  Google Scholar 

  10. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77(3):360–368

    Article  PubMed  CAS  Google Scholar 

  11. Engel DC, Mies G, Terpolilli NA, Trabold R, Loch A, De Zeeuw CI, Weber JT, Maas AI, Plesnila N (2008) Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14c-iodoantipyrine autoradiography in mice using a non-invasive protocol. J Neurotrauma 25(7):739–753

    Article  PubMed  Google Scholar 

  12. Menon DK (2003) Procrustes, the traumatic penumbra, and perfusion pressure targets in closed head injury. Anesthesiology 98(4):805–807

    Article  PubMed  Google Scholar 

  13. Yamakami I, McIntosh TK (1989) Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab 9(1):117–124

    Article  PubMed  CAS  Google Scholar 

  14. Alessandri B, Schwandt E, Kamada Y, Nagata M, Heimann A, Kempski O (2012) The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats. J Neurotrauma 29(12):2181–2191

    Article  PubMed  Google Scholar 

  15. Hendrich KS, Kochanek PM, Williams DS, Schiding JK, Marion DW, Ho C (1999) Early perfusion after controlled cortical impact in rats: quantification by arterial spin-labeled mri and the influence of spin–lattice relaxation time heterogeneity. Magn Reson Med 42(4):673–681

    Article  PubMed  CAS  Google Scholar 

  16. Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM (2007) In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 25(2):219–227

    Article  PubMed  Google Scholar 

  17. Golding EM, Robertson CS, Bryan RM Jr (1999) The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 21(4):299–332

    Article  PubMed  CAS  Google Scholar 

  18. Prat R, Markiv V, Dujovny M, Misra M (1998) Failure of cerebral autoregulation in an experimental diffuse brain injury model. Acta Neurochir Suppl 71:123–126

    PubMed  CAS  Google Scholar 

  19. Forbes ML, Hendrich KS, Kochanek PM, Williams DS, Schiding JK, Wisniewski SR, Kelsey SF, DeKosky ST, Graham SH, Marion DW, Ho C (1997) Assessment of cerebral blood flow and co2 reactivity after controlled cortical impact by perfusion magnetic resonance imaging using arterial spin-labeling in rats. J Cereb Blood Flow Metab 17(8):865–874

    Article  PubMed  CAS  Google Scholar 

  20. Engelborghs K, Haseldonckx M, Van Reempts J, Van Rossem K, Wouters L, Borgers M, Verlooy J (2000) Impaired autoregulation of cerebral blood flow in an experimental model of traumatic brain injury. J Neurotrauma 17(8):667–677

    Article  PubMed  CAS  Google Scholar 

  21. Nawashiro H, Shima K, Chigasaki H (1995) Immediate cerebrovascular responses to closed head injury in the rat. J Neurotrauma 12(2):189–197

    Article  PubMed  CAS  Google Scholar 

  22. Ter Minassian A, Dube L, Guilleux AM, Wehrmann N, Ursino M, Beydon L (2002) Changes in intracranial pressure and cerebral autoregulation in patients with severe traumatic brain injury. Crit Care Med 30(7):1616–1622

    Article  PubMed  Google Scholar 

  23. Ginsberg MD, Zhao W, Alonso OF, Loor-Estades JY, Dietrich WD, Busto R (1997) Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Physiol 272(6 Pt 2):H2859–H2868

    PubMed  CAS  Google Scholar 

  24. Shahlaie K, Keachie K, Hutchins IM, Rudisill N, Madden LK, Smith KA, Ko KA, Latchaw RE, Muizelaar JP (2011) Risk factors for posttraumatic vasospasm. J Neurosurg 115(3):602–611

    Article  PubMed  Google Scholar 

  25. Dore-Duffy P, Wang S, Mehedi A, Katyshev V, Cleary K, Tapper A, Reynolds C, Ding Y, Zhan P, Rafols J, Kreipke CW (2011) Pericyte-mediated vasoconstriction underlies tbi-induced hypoperfusion. Neurol Res 33(2):176–186

    Article  PubMed  CAS  Google Scholar 

  26. Bouma GJ, Muizelaar JP (1992) Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 9(Suppl 1):S333–S348

    PubMed  Google Scholar 

  27. Bowles AP, Pasierb L, Simunich T, Updyke M (2012) Implications of neurophysiological parameters in persons with severe brain injury with respect to improved patient outcomes: a retrospective review. Brain Inj 26(12):1415–1424

    Article  PubMed  Google Scholar 

  28. Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23(3):293–299

    Article  PubMed  CAS  Google Scholar 

  29. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  PubMed  CAS  Google Scholar 

  30. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  PubMed  CAS  Google Scholar 

  31. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7(1):22–30

    Article  PubMed  CAS  Google Scholar 

  32. Stein SC, Graham DI, Chen XH, Smith DH (2004) Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery 54(3):687–691, discussion 691

    Article  PubMed  Google Scholar 

  33. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N (2010) Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 27(1):121–130

    Article  PubMed  Google Scholar 

  34. Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22(5):E1

    Article  Google Scholar 

  35. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129(4):1021–1029

    Article  PubMed  CAS  Google Scholar 

  36. Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, Zimmerman MC, Chandra N, Haorah J (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291

    Article  PubMed  CAS  Google Scholar 

  37. Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM (1997) Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol 61(3):279–285

    PubMed  CAS  Google Scholar 

  38. Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102(23):8333–8338

    Article  PubMed  Google Scholar 

  39. Maeda T, Katayama Y, Kawamata T, Aoyama N, Mori T (1997) Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor. Acta Neurochir Suppl 70:102–105

    PubMed  CAS  Google Scholar 

  40. Hayward NM, Tuunanen PI, Immonen R, Ndode-Ekane XE, Pitkanen A, Grohn O (2011) Magnetic resonance imaging of regional hemodynamic and cerebrovascular recovery after lateral fluid-percussion brain injury in rats. J Cereb Blood Flow Metab 31(1):166–177

    Article  PubMed  Google Scholar 

  41. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11(3):298–308

    PubMed  CAS  Google Scholar 

  42. Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C (2002) Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma 19(9):1029–1037

    Article  PubMed  Google Scholar 

  43. Hayward NM, Immonen R, Tuunanen PI, Ndode-Ekane XE, Grohn O, Pitkanen A (2010) Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma 27(12):2203–2219

    Article  PubMed  Google Scholar 

  44. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438(7070):954–959

    Article  PubMed  CAS  Google Scholar 

  45. Morgan R, Kreipke CW, Roberts G, Bagchi M, Rafols JA (2007) Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 29(4):375–381

    Article  PubMed  CAS  Google Scholar 

  46. Cernak I (2005) Animal models of head trauma. NeuroRx 2(3):410–422

    Article  PubMed  Google Scholar 

  47. Morganti-Kossmann MC, Yan E, Bye N (2010) Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 41(Suppl 1):S10–S13

    Article  PubMed  Google Scholar 

  48. Duhaime AC (2006) Large animal models of traumatic injury to the immature brain. Dev Neurosci 28(4–5):380–387

    Article  PubMed  CAS  Google Scholar 

  49. Finnie J (2001) Animal models of traumatic brain injury: a review. Aust Vet J 79(9):628–633

    Article  PubMed  CAS  Google Scholar 

  50. O’Connor WT, Smyth A, Gilchrist MD (2011) Animal models of traumatic brain injury: a critical evaluation. Pharmacol Ther 130(2):106–113

    Article  PubMed  Google Scholar 

  51. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9

    Article  PubMed  CAS  Google Scholar 

  52. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2):128–142

    Article  PubMed  CAS  Google Scholar 

  53. Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22(1):42–75

    Article  PubMed  Google Scholar 

  54. Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI (2010) Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc 5(9):1552–1563

    Article  PubMed  CAS  Google Scholar 

  55. Graham DI, Raghupathi R, Saatman KE, Meaney D, McIntosh TK (2000) Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury. Acta Neuropathol 99(2):117–124

    Article  PubMed  CAS  Google Scholar 

  56. Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5(2):91–104

    Article  PubMed  CAS  Google Scholar 

  57. Prins ML, Lee SM, Cheng CL, Becker DP, Hovda DA (1996) Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Brain Res Dev Brain Res 95(2):272–282

    Article  PubMed  CAS  Google Scholar 

  58. Fujita M, Wei EP, Povlishock JT (2012) Effects of hypothermia on cerebral autoregulatory vascular responses in two rodent models of traumatic brain injury. J Neurotrauma 29(7):1491–1498

    Article  PubMed  Google Scholar 

  59. Armstead WM, Kiessling JW, Kofke WA, Vavilala MS (2010) Impaired cerebral blood flow autoregulation during posttraumatic arterial hypotension after fluid percussion brain injury is prevented by phenylephrine in female but exacerbated in male piglets by extracellular signal-related kinase mitogen-activated protein kinase upregulation. Crit Care Med 38(9):1868–1874

    Article  PubMed  CAS  Google Scholar 

  60. Armstead WM, Kiessling JW, Cines DB, Higazi AA (2011) Glucagon protects against impaired nmda-mediated cerebrovasodilation and cerebral autoregulation during hypotension after brain injury by activating camp protein kinase a and inhibiting upregulation of tpa. J Neurotrauma 28(3):451–457

    Article  PubMed  Google Scholar 

  61. Schmidt RH, Grady MS (1993) Regional patterns of blood–brain barrier breakdown following central and lateral fluid percussion injury in rodents. J Neurotrauma 10(4):415–430

    Article  PubMed  CAS  Google Scholar 

  62. Beziaud T, Ru Chen X, El Shafey N, Frechou M, Teng F, Palmier B, Beray-Berthat V, Soustrat M, Margaill I, Plotkine M, Marchand-Leroux C et al (2011) Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med 39(10):2300–2307

    Article  PubMed  CAS  Google Scholar 

  63. Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD (2009) Alterations in blood–brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 26(7):1123–1134

    Article  PubMed  Google Scholar 

  64. Floyd CL, Golden KM, Black RT, Hamm RJ, Lyeth BG (2002) Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J Neurotrauma 19(3):303–316

    Article  PubMed  Google Scholar 

  65. Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK (1995) A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 12(2):169–178

    Article  PubMed  CAS  Google Scholar 

  66. Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16(2):109–122

    Article  PubMed  CAS  Google Scholar 

  67. Saatman KE, Feeko KJ, Pape RL, Raghupathi R (2006) Differential behavioral and histopathological responses to graded cortical impact injury in mice. J Neurotrauma 23(8):1241–1253

    Article  PubMed  Google Scholar 

  68. von Baumgarten L, Trabold R, Thal S, Back T, Plesnila N (2008) Role of cortical spreading depressions for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 28(7):1353–1360

    Article  Google Scholar 

  69. Hall ED, Bryant YD, Cho W, Sullivan PG (2008) Evolution of post-traumatic neurodegeneration after controlled cortical impact traumatic brain injury in mice and rats as assessed by the de olmos silver and fluorojade staining methods. J Neurotrauma 25(3):235–247

    Article  PubMed  Google Scholar 

  70. Soblosky JS, Matthews MA, Davidson JF, Tabor SL, Carey ME (1996) Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates. Behav Brain Res 79(1–2):79–92

    Article  PubMed  CAS  Google Scholar 

  71. Zweckberger K, Stoffel M, Baethmann A, Plesnila N (2003) Effect of decompression craniotomy on increase of contusion volume and functional outcome after controlled cortical impact in mice. J Neurotrauma 20(12):1307–1314

    Article  PubMed  Google Scholar 

  72. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13(10):557–568

    PubMed  CAS  Google Scholar 

  73. Henninger N, Dutzmann S, Sicard KM, Kollmar R, Bardutzky J, Schwab S (2005) Impaired spatial learning in a novel rat model of mild cerebral concussion injury. Expe Neurol 195(2):447–457

    Article  Google Scholar 

  74. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4(9):1328–1337

    Article  PubMed  CAS  Google Scholar 

  75. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part i: pathophysiology and biomechanics. J Neurosurg 80(2):291–300

    Article  PubMed  CAS  Google Scholar 

  76. Roof RL, Hall ED (2000) Estrogen-related gender difference in survival rate and cortical blood flow after impact-acceleration head injury in rats. J Neurotrauma 17(12):1155–1169

    Article  PubMed  CAS  Google Scholar 

  77. Engelborghs K, Verlooy J, Van Reempts J, Van Deuren B, Van de Ven M, Borgers M (1998) Temporal changes in intracranial pressure in a modified experimental model of closed head injury. J Neurosurg 89(5):796–806

    Article  PubMed  CAS  Google Scholar 

  78. Prat R, Markiv V, Dujovny M, Misra M (1998) Failure of cerebral autoregulation in an experimental diffuse brain injury model. Acta Neurochir Suppl 71:123–126

    PubMed  CAS  Google Scholar 

  79. Nawashiro H, Shima K, Chigasaki H (1995) Immediate cerebrovascular responses to closed head injury in the rat. J Neurotrauma 12(2):189–197

    Article  PubMed  CAS  Google Scholar 

  80. Heath DL, Vink R (1995) Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome. J Neurotrauma 12(6):1027–1034

    Article  PubMed  CAS  Google Scholar 

  81. Vink R, O’Connor CA, Nimmo AJ, Heath DL (2003) Magnesium attenuates persistent functional deficits following diffuse traumatic brain injury in rats. Neurosci Lett 336(1):41–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, X. et al. (2014). Vascular Responses in Rodent Models of Traumatic Brain Injury. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics