Neurovascular Mechanisms of Ischemia Tolerance Against Brain Injury

  • Kunjan R. Dave
  • John W. Thompson
  • Jake T. Neumann
  • Miguel A. Perez-Pinzon
  • Hung W. Lin
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR, volume 5)

Abstract

Traumatic brain injury (TBI) can result in secondary ischemia. This secondary ischemic insult is implicated in post-TBI pathophysiology. Pharmacological intervention to elevate cerebral blood flow can improve outcomes following TBI. The brain and other organ systems have an innate ability to induce protection against ischemic injury, limiting the severity of the ischemia-induced damage. This “self” protection can be initiated by exposing the brain to a stimulus before ischemia called “preconditioning,” such as exposure to a mild episode(s) of ischemia, hypoxia, anesthesia, or pharmacologically induced mild cell stressors. Current efforts to reduce ischemia-induced brain damage have been the focus in determining the mechanisms of preconditioning-induced ischemia tolerance as findings may help lower cerebral ischemia-induced brain damage in at-risk patients including TBI patients. Different preconditioning paradigms have been shown to lower TBI-induced damage. Although not all of the mechanisms of preconditioning are confirmed in models of TBI, basic mechanisms of preconditioning applies here as ischemia is a major part of TBI. Ischemic preconditioning, in part, confers protection by modulating regulators of cerebral blood flow, increase angiogenesis, and prevent cerebral ischemia-induced increase in blood–brain barrier permeability. This chapter highlights preconditioning-induced changes in components of the neurovascular system involved in ischemia tolerance. Understanding of these pathways may aid in the development of novel therapies to protect the brain from TBI-induced secondary ischemic insult.

Keywords

Permeability Ischemia Attenuation Superoxide Aldehyde 

References

  1. 1.
  2. 2.
    Hlatky R, Valadka AB, Robertson CS (2003) Intracranial hypertension and cerebral ischemia after severe traumatic brain injury. Neurosurg Focus 14(4):e2PubMedGoogle Scholar
  3. 3.
    Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience 89:453–459PubMedGoogle Scholar
  4. 4.
    Schurr A, Reid KH, Tseng MT, West C, Rigor BM (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374:244–248PubMedGoogle Scholar
  5. 5.
    De Hert SG, Turani F, Mathur S, Stowe DF (2005) Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg 100:1584–1593. doi: 10.1213/01.ANE.0000153483.61170.0C PubMedGoogle Scholar
  6. 6.
    Freed RS, Freed SA (1990) Ghost illness of children in north India. Med Anthropol 12:401–417. doi: 10.1080/01459740.1990.9966034 PubMedGoogle Scholar
  7. 7.
    Widimsky J, Stolz I (1977) The adaptation of cardiovascular system to exercise and training in healthy subjects and in heart disease. Acta Univ Carol Med Monogr 82:1–26PubMedGoogle Scholar
  8. 8.
    Horiguchi T, Snipes JA, Kis B, Shimizu K, Busija DW (2005) The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res 1039:84–89. doi: 10.1016/j.brainres.2005.01.047 PubMedGoogle Scholar
  9. 9.
    Kawahara N, Ruetzler CA, Klatzo I (1995) Protective effect of spreading depression against neuronal damage following cardiac arrest cerebral ischaemia. Neurol Res 17:9–16PubMedGoogle Scholar
  10. 10.
    Hellweg R, von Arnim CA, Buchner M, Huber R, Riepe MW (2003) Neuroprotection and neuronal dysfunction upon repetitive inhibition of oxidative phosphorylation. Exp Neurol 183:346–354PubMedGoogle Scholar
  11. 11.
    Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17:257–264. doi: 10.1097/00004647-199703000-00002 PubMedGoogle Scholar
  12. 12.
    Wiegand F, Liao W, Busch C, Castell S, Knapp F, Lindauer U, Megow D, Meisel A, Redetzky A, Ruscher K, Trendelenburg G, Victorov I, Riepe M, Diener HC, Dirnagl U (1999) Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 19:1229–1237. doi: 10.1097/00004647-199911000-00007 PubMedGoogle Scholar
  13. 13.
    Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 11:299–307. doi: 10.1038/jcbfm.1991.62 PubMedGoogle Scholar
  14. 14.
    Stagliano NE, Perez-Pinzon MA, Moskowitz MA, Huang PL (1999) Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 19:757–761. doi: 10.1097/00004647-199907000-00005 PubMedGoogle Scholar
  15. 15.
    Truettner J, Busto R, Zhao W, Ginsberg MD, Perez-Pinzon MA (2002) Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res 103:106–115PubMedGoogle Scholar
  16. 16.
    Xu GP, Dave KR, Vivero R, Schmidt-Kastner R, Sick TJ, Perez-Pinzon MA (2002) Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 952:153–158PubMedGoogle Scholar
  17. 17.
    Perez-Pinzon MA, Alonso O, Kraydieh S, Dietrich WD (1999) Induction of tolerance against traumatic brain injury by ischemic preconditioning. Neuroreport 10:2951–2954PubMedGoogle Scholar
  18. 18.
    Shein NA, Horowitz M, Shohami E (2007) Heat acclimation: a unique model of physiologically mediated global preconditioning against traumatic brain injury. Prog Brain Res 161:353–363. doi: 10.1016/S0079-6123(06)61025-X PubMedGoogle Scholar
  19. 19.
    Hu SL, Hu R, Li F, Liu Z, Xia YZ, Cui GY, Feng H (2008) Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude. Acta Neurochir Suppl 105:191–196PubMedGoogle Scholar
  20. 20.
    Hu S, Li F, Luo H, Xia Y, Zhang J, Hu R, Cui G, Meng H, Feng H (2010) Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning. Neurol Res 32:173–178. doi: 10.1179/174313209X414524 PubMedGoogle Scholar
  21. 21.
    Costa T, Constantino LC, Mendonca BP, Pereira JG, Herculano B, Tasca CI, Boeck CR (2010) N-methyl-D-aspartate preconditioning improves short-term motor deficits outcome after mild traumatic brain injury in mice. J Neurosci Res 88:1329–1337. doi: 10.1002/jnr.22300 PubMedGoogle Scholar
  22. 22.
    Moojen VK, Damiani-Neves M, Bavaresco DV, Pescador BB, Comim CM, Quevedo J, Boeck CR (2012) NMDA preconditioning prevents object recognition memory impairment and increases brain viability in mice exposed to traumatic brain injury. Brain Res 1466:82–90. doi: 10.1016/j.brainres.2012.05.041 PubMedGoogle Scholar
  23. 23.
    del Zoppo GJ (2012) Aging and the neurovascular unit. Ann N Y Acad Sci 1268:127–133. doi: 10.1111/j.1749-6632.2012.06686.x PubMedGoogle Scholar
  24. 24.
    del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555. doi: 10.1056/NEJMp058312 PubMedGoogle Scholar
  25. 25.
    del Zoppo GJ (2010) The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci 1207:46–49. doi: 10.1111/j.1749-6632.2010.05760.x PubMedGoogle Scholar
  26. 26.
    Shohami E, Novikov M, Horowitz M (1994) Long term exposure to heat reduces edema formation after closed head injury in the rat. Acta Neurochir Suppl 60:443–445PubMedGoogle Scholar
  27. 27.
    Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24PubMedGoogle Scholar
  28. 28.
    Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ (1997) Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab 17:175–182. doi: 10.1097/00004647-199702000-00007 PubMedGoogle Scholar
  29. 29.
    Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368. doi: 10.1038/nn.2953 PubMedGoogle Scholar
  30. 30.
    Cabrera JA, Ziemba EA, Colbert R, Anderson LB, Sluiter W, Duncker DJ, Butterick TA, Sikora J, Ward HB, Kelly RF, McFalls EO (2012) Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning. Am J Physiol Heart Circ Physiol 302:H1974–H1982. doi: 10.1152/ajpheart.00372.2011 PubMedGoogle Scholar
  31. 31.
    Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ, Perez-Pinzon MA (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cereb Blood Flow Metab 21:1401–1410. doi: 10.1097/00004647-200112000-00004 PubMedGoogle Scholar
  32. 32.
    Kurian GA, Berenshtein E, Saada A, Chevion M (2012) Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem 30:83–94. doi: 10.1159/000339043 PubMedGoogle Scholar
  33. 33.
    Quarrie R, Lee DS, Steinbaugh G, Cramer B, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA (2012) Ischemic preconditioning preserves mitochondrial membrane potential and limits reactive oxygen species production. J Surg Res 178:8–17. doi: 10.1016/j.jss.2012.05.090 PubMedGoogle Scholar
  34. 34.
    Glantz L, Avramovich A, Trembovler V, Gurvitz V, Kohen R, Eidelman LA, Shohami E (2005) Ischemic preconditioning increases antioxidants in the brain and peripheral organs after cerebral ischemia. Exp Neurol 192:117–124. doi: 10.1016/j.expneurol.2004.11.012 PubMedGoogle Scholar
  35. 35.
    Perez-Pinzon MA, Dave KR, Raval AP (2005) Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal 7:1150–1157. doi: 10.1089/ars.2005.7.1150 PubMedGoogle Scholar
  36. 36.
    Ding ZM, Wu B, Zhang WQ, Lu XJ, Lin YC, Geng YJ, Miao YF (2012) Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol Sci 13:6089–6101. doi: 10.3390/ijms13056089 PubMedGoogle Scholar
  37. 37.
    El-Achkar TM (2012) Modulation of apoptosis by ischemic preconditioning: an emerging role for miR-21. Kidney Int 82:1149–1151. doi: 10.1038/ki.2012.305 PubMedGoogle Scholar
  38. 38.
    Lin WY, Chang YC, Ho CJ, Huang CC (2013) Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke 44:162–169. doi: 10.1161/STROKEAHA.112.677617 PubMedGoogle Scholar
  39. 39.
    Lin HY, Huang CC, Chang KF (2009) Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 66:254–259. doi: 10.1203/PDR.0b013e3181b0d336 PubMedGoogle Scholar
  40. 40.
    Perez-Pinzon MA, Mumford PL, Rosenthal M, Sick TJ (1996) Anoxic preconditioning in hippocampal slices: role of adenosine. Neuroscience 75:687–694PubMedGoogle Scholar
  41. 41.
    Zhou AM, Li WB, Li QJ, Liu HQ, Feng RF, Zhao HG (2004) A short cerebral ischemic preconditioning up-regulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res 48:397–404. doi: 10.1016/j.neures.2003.12.010 PubMedGoogle Scholar
  42. 42.
    Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA (2007) EpsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res 1184:345–353. doi: 10.1016/j.brainres.2007.09.073 PubMedGoogle Scholar
  43. 43.
    Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW (2008) ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095. J Cereb Blood Flow Metab 28:1090–1103. doi: 10.1038/sj.jcbfm.9600611 PubMedGoogle Scholar
  44. 44.
    Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 43:1048–1060. doi: 10.1016/j.freeradbiomed.2007.06.018 PubMedGoogle Scholar
  45. 45.
    Lange-Asschenfeldt C, Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2004) Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J Cereb Blood Flow Metab 24:636–645. doi: 10.1097/01.WCB.0000121235.42748.BF PubMedGoogle Scholar
  46. 46.
    Zhang J, Bian HJ, Li XX, Liu XB, Sun JP, Li N, Zhang Y, Ji XP (2010) ERK-MAPK signaling opposes rho-kinase to reduce cardiomyocyte apoptosis in heart ischemic preconditioning. Mol Med 16:307–315. doi: 10.2119/molmed.2009.00121 PubMedGoogle Scholar
  47. 47.
    Zhang QG, Wang RM, Han D, Yang LC, Li J, Brann DW (2009) Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci Res 63:205–212PubMedGoogle Scholar
  48. 48.
    Bhuiyan MI, Jung SY, Kim HJ, Lee YS, Jin C (2011) Major role of the PI3K/Akt pathway in ischemic tolerance induced by sublethal oxygen-glucose deprivation in cortical neurons in vitro. Arch Pharm Res 34:1023–1034. doi: 10.1007/s12272-011-0620-3 PubMedGoogle Scholar
  49. 49.
    Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA (2010) Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa B activation in mixed cortical neuronal cultures. Transl Stroke Res 1:40–47PubMedGoogle Scholar
  50. 50.
    Kim EJ, Raval AP, Perez-Pinzon MA (2008) Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab 28:1329–1340. doi: 10.1038/jcbfm.2008.26 PubMedGoogle Scholar
  51. 51.
    Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003) Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 23:384–391PubMedGoogle Scholar
  52. 52.
    Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002. doi: 10.1016/j.neuroscience.2009.01.017 PubMedGoogle Scholar
  53. 53.
    Raval AP, Dave KR, Perez-Pinzon MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147. doi: 10.1038/sj.jcbfm.9600262 PubMedGoogle Scholar
  54. 54.
    Wurdak H, Zhu S, Min KH, Aimone L, Lairson LL, Watson J, Chopiuk G, Demas J, Charette B, Halder R, Weerapana E, Cravatt BF, Cline HT, Peters EC, Zhang J, Walker JR, Wu C, Chang J, Tuntland T, Cho CY, Schultz PG (2010) A small molecule accelerates neuronal differentiation in the adult rat. Proc Natl Acad Sci U S A 107:16542–16547. doi: 10.1073/pnas.1010300107 PubMedGoogle Scholar
  55. 55.
    Kitagawa K (2012) Ischemic tolerance in the brain: endogenous adaptive machinery against ischemic stress. J Neurosci Res 90:1043–1054. doi: 10.1002/jnr.23005 PubMedGoogle Scholar
  56. 56.
    Kim E, Raval AP, Defazio RA, Perez-Pinzon MA (2007) Ischemic preconditioning via epsilon protein kinase C activation requires cyclooxygenase-2 activation in vitro. Neuroscience 145:931–941. doi: 10.1016/j.neuroscience.2006.12.063 PubMedGoogle Scholar
  57. 57.
    Cross HR, Murphy E, Bolli R, Ping P, Steenbergen C (2002) Expression of activated PKC epsilon (PKC epsilon) protects the ischemic heart, without attenuating ischemic H(+) production. J Mol Cell Cardiol 34:361–367. doi: 10.1006/jmcc.2001.1518 PubMedGoogle Scholar
  58. 58.
    Saurin AT, Pennington DJ, Raat NJ, Latchman DS, Owen MJ, Marber MS (2002) Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc Res 55:672–680PubMedGoogle Scholar
  59. 59.
    Budas GR, Churchill EN, Disatnik MH, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88:83–92. doi: 10.1093/cvr/cvq154 PubMedGoogle Scholar
  60. 60.
    Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA (2008) Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci 28:4172–4182. doi: 10.1523/JNEUROSCI.5471-07.2008 PubMedGoogle Scholar
  61. 61.
    Churchill EN, Disatnik MH, Mochly-Rosen D (2009) Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of varepsilonPKC and activation of aldehyde dehydrogenase 2. J Mol Cell Cardiol 46:278–284. doi: 10.1016/j.yjmcc.2008.09.713 PubMedGoogle Scholar
  62. 62.
    Ogbi M, Chew CS, Pohl J, Stuchlik O, Ogbi S, Johnson JA (2004) Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity. Biochem J 382:923–932. doi: 10.1042/BJ20040468 PubMedGoogle Scholar
  63. 63.
    Ogbi M, Johnson JA (2006) Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J 393:191–199. doi: 10.1042/BJ20050757 PubMedGoogle Scholar
  64. 64.
    Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92:873–880. doi: 10.1161/01.RES.0000069215.36389.8D PubMedGoogle Scholar
  65. 65.
    Carroll R, Gant VA, Yellon DM (2001) Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700PubMedGoogle Scholar
  66. 66.
    Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809PubMedGoogle Scholar
  67. 67.
    Obata T, Yamanaka Y (2000) Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium. Arch Biochem Biophys 378:195–200. doi: 10.1006/abbi.2000.1830 PubMedGoogle Scholar
  68. 68.
    Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502. doi: 10.1016/j.molmed.2008.09.003 PubMedGoogle Scholar
  69. 69.
    Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci (Landmark Ed) 16:1733–1745Google Scholar
  70. 70.
    Morris KC, Lin HW, Thompson JW, Perez-Pinzon MA (2011) Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31:1003–1019. doi: 10.1038/jcbfm.2010.229 PubMedGoogle Scholar
  71. 71.
    Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460. doi: 10.1074/jbc.M501485200 PubMedGoogle Scholar
  72. 72.
    Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599. doi: 10.1074/jbc.M109.070169 PubMedGoogle Scholar
  73. 73.
    Tajbakhsh N, Sokoya EM (2012) Regulation of cerebral vascular function by sirtuin 1. Microcirculation 19:336–342. doi: 10.1111/j.1549-8719.2012.00167.x PubMedGoogle Scholar
  74. 74.
    Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, Hashizume Y, Sano Y, Kanda T, Mizuno T, Suzumura A (2009) Interleukin-25 expressed by brain capillary endothelial cells maintains blood–brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 284:31834–31842. doi: 10.1074/jbc.M109.025940 PubMedGoogle Scholar
  75. 75.
    Chen J, Graham SH, Zhu RL, Simon RP (1996) Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16:566–577. doi: 10.1097/00004647-199607000-00006 PubMedGoogle Scholar
  76. 76.
    Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol 234:H59–H66PubMedGoogle Scholar
  77. 77.
    Dawson DA, Furuya K, Gotoh J, Nakao Y, Hallenbeck JM (1999) Cerebrovascular hemodynamics and ischemic tolerance: lipopolysaccharide-induced resistance to focal cerebral ischemia is not due to changes in severity of the initial ischemic insult, but is associated with preservation of microvascular perfusion. J Cereb Blood Flow Metab 19:616–623. doi: 10.1097/00004647-199906000-00004 PubMedGoogle Scholar
  78. 78.
    von Kummer R, von Kries F, Herold S (1986) Hydrogen clearance method for determining local cerebral blood flow. II. Effect of heterogeneity in cerebral blood flow. J Cereb Blood Flow Metab 6:492–498. doi: 10.1038/jcbfm.1986.84 Google Scholar
  79. 79.
    Matsushima K, Hakim AM (1995) Transient forebrain ischemia protects against subsequent focal cerebral ischemia without changing cerebral perfusion. Stroke 26:1047–1052PubMedGoogle Scholar
  80. 80.
    Matsushima K, Hogan MJ, Hakim AM (1996) Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. J Cereb Blood Flow Metab 16:221–226. doi: 10.1097/00004647-199603000-00006 PubMedGoogle Scholar
  81. 81.
    Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ (1998) Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29:1937–1950, discussion 1950–1931PubMedGoogle Scholar
  82. 82.
    Nakamura H, Katsumata T, Nishiyama Y, Otori T, Katsura K, Katayama Y (2006) Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils. Life Sci 78:1713–1719. doi: 10.1016/j.lfs.2005.08.008 PubMedGoogle Scholar
  83. 83.
    Zhao L, Nowak TS Jr (2006) CBF changes associated with focal ischemic preconditioning in the spontaneously hypertensive rat. J Cereb Blood Flow Metab 26:1128–1140. doi: 10.1038/sj.jcbfm.9600269 PubMedGoogle Scholar
  84. 84.
    Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C (2007) Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 27:7083–7093. doi: 10.1523/JNEUROSCI.1645-07.2007 PubMedGoogle Scholar
  85. 85.
    Cho S, Park EM, Zhou P, Frys K, Ross ME, Iadecola C (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25:493–501. doi: 10.1038/sj.jcbfm.9600058 PubMedGoogle Scholar
  86. 86.
    Jefayri MK, Grace PA, Mathie RT (2000) Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide. BJU Int 85:1007–1013PubMedGoogle Scholar
  87. 87.
    Kempski O, Shohami E, von Lubitz D, Hallenbeck JM, Feuerstein G (1987) Postischemic production of eicosanoids in gerbil brain. Stroke 18:111–119PubMedGoogle Scholar
  88. 88.
    Puisieux F, Deplanque D, Pu Q, Souil E, Bastide M, Bordet R (2000) Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide-induced brain ischemic tolerance. Eur J Pharmacol 389:71–78PubMedGoogle Scholar
  89. 89.
    Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11:499–502. doi: 10.1002/ana.410110510 PubMedGoogle Scholar
  90. 90.
    Cherian L, Hlatky R, Robertson CS (2004) Nitric oxide in traumatic brain injury. Brain Pathol 14:195–201PubMedGoogle Scholar
  91. 91.
    Buchan AM, Slivka A, Xue D (1992) The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res 574:171–177PubMedGoogle Scholar
  92. 92.
    Hoyte LC, Papadakis M, Barber PA, Buchan AM (2006) Improved regional cerebral blood flow is important for the protection seen in a mouse model of late phase ischemic preconditioning. Brain Res 1121:231–237. doi: 10.1016/j.brainres.2006.08.107 PubMedGoogle Scholar
  93. 93.
    Li Y, Lu Z, Keogh CL, Yu SP, Wei L (2007) Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab 27:1043–1054. doi: 10.1038/sj.jcbfm.9600417 PubMedGoogle Scholar
  94. 94.
    Nagel S, Papadakis M, Chen R, Hoyte LC, Brooks KJ, Gallichan D, Sibson NR, Pugh C, Buchan AM (2011) Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 31:132–143. doi: 10.1038/jcbfm.2010.60 PubMedGoogle Scholar
  95. 95.
    Sugiyama Y, Yagita Y, Oyama N, Terasaki Y, Omura-Matsuoka E, Sasaki T, Kitagawa K (2011) Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke 42:770–775. doi: 10.1161/STROKEAHA.110.597799 PubMedGoogle Scholar
  96. 96.
    Zwagerman N, Sprague S, Davis MD, Daniels B, Goel G, Ding Y (2010) Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res 32:523–529. doi: 10.1179/016164109X12581096796431 PubMedGoogle Scholar
  97. 97.
    Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, Tao HY, Ostrowski RP, Zhang JH, Sun XJ (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol 104:1185–1191. doi: 10.1152/japplphysiol.00323.2007 PubMedGoogle Scholar
  98. 98.
    Gustavsson M, Mallard C, Vannucci SJ, Wilson MA, Johnston MV, Hagberg H (2007) Vascular response to hypoxic preconditioning in the immature brain. J Cereb Blood Flow Metab 27:928–938. doi: 10.1038/sj.jcbfm.9600408 PubMedGoogle Scholar
  99. 99.
    Gustavsson M, Wilson MA, Mallard C, Rousset C, Johnston MV, Hagberg H (2007) Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms? Pediatr Res 61:444–450. doi: 10.1203/pdr.0b013e3180332be4 PubMedGoogle Scholar
  100. 100.
    Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578. doi: 10.1146/annurev.cellbio.15.1.551 PubMedGoogle Scholar
  101. 101.
    Sorond FA, Shaffer ML, Kung AL, Lipsitz LA (2009) Desferroxamine infusion increases cerebral blood flow: a potential association with hypoxia-inducible factor-1. Clin Sci 116:771–779. doi: 10.1042/CS20080320 PubMedGoogle Scholar
  102. 102.
    Hashiguchi A, Yano S, Morioka M, Hamada J, Ushio Y, Takeuchi Y, Fukunaga K (2004) Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab 24:271–279. doi: 10.1097/01.WCB.0000110539.96047.FC PubMedGoogle Scholar
  103. 103.
    Willmot M, Gray L, Gibson C, Murphy S, Bath PM (2005) A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 12:141–149. doi: 10.1016/j.niox.2005.01.003 PubMedGoogle Scholar
  104. 104.
    Atochin DN, Clark J, Demchenko IT, Moskowitz MA, Huang PL (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke 34:1299–1303. doi: 10.1161/01.STR.0000066870.70976.57 PubMedGoogle Scholar
  105. 105.
    Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981–987. doi: 10.1097/00004647-199609000-00023 PubMedGoogle Scholar
  106. 106.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. doi: 10.1038/nature09613 PubMedGoogle Scholar
  107. 107.
    Busija DW, Bari F, Domoki F, Louis T (2007) Mechanisms involved in the cerebrovascular dilator effects of N-methyl-D-aspartate in cerebral cortex. Brain Res Rev 56:89–100. doi: 10.1016/j.brainresrev.2007.05.011 PubMedGoogle Scholar
  108. 108.
    Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388. doi: 10.1038/336385a0 PubMedGoogle Scholar
  109. 109.
    Chen FY, Lee TJ (1993) Role of nitric oxide in neurogenic vasodilation of porcine cerebral artery. J Pharmacol Exp Ther 265:339–345PubMedGoogle Scholar
  110. 110.
    Ishine T, Yu JG, Asada Y, Lee TJ (1999) Nitric oxide is the predominant mediator for neurogenic vasodilation in porcine pial veins. J Pharmacol Exp Ther 289:398–404PubMedGoogle Scholar
  111. 111.
    Lee TJ, Sarwinski S, Ishine T, Lai CC, Chen FY (1996) Inhibition of cerebral neurogenic vasodilation by L-glutamine and nitric oxide synthase inhibitors and its reversal by L-citrulline. J Pharmacol Exp Ther 276:353–358PubMedGoogle Scholar
  112. 112.
    Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081PubMedGoogle Scholar
  113. 113.
    Liu X, Li C, Gebremedhin D, Hwang SH, Hammock BD, Falck JR, Roman RJ, Harder DR, Koehler RC (2011) Epoxyeicosatrienoic acid-dependent cerebral vasodilation evoked by metabotropic glutamate receptor activation in vivo. Am J Physiol Heart Circ Physiol 301:H373–H381. doi: 10.1152/ajpheart.00745.2010 PubMedGoogle Scholar
  114. 114.
    Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749. doi: 10.1038/nature07525 PubMedGoogle Scholar
  115. 115.
    Wendling WW, Chen D, Daniels FB, Monteforte MR, Fischer MB, Harakal C, Carlsson C (1996) The effects of N-methyl-D-aspartate agonists and antagonists on isolated bovine cerebral arteries. Anesth Analg 82:264–268PubMedGoogle Scholar
  116. 116.
    Davis RJ, Murdoch CE, Ali M, Purbrick S, Ravid R, Baxter GS, Tilford N, Sheldrick RL, Clark KL, Coleman RA (2004) EP4 prostanoid receptor-mediated vasodilatation of human middle cerebral arteries. Br J Pharmacol 141:580–585. doi: 10.1038/sj.bjp.0705645 PubMedGoogle Scholar
  117. 117.
    Conti MA, Adelstein RS (1981) The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′:5′ cAMP-dependent protein kinase. J Biol Chem 256:3178–3181PubMedGoogle Scholar
  118. 118.
    Nakamura K, Koga Y, Sakai H, Homma K, Ikebe M (2007) cGMP-dependent relaxation of smooth muscle is coupled with the change in the phosphorylation of myosin phosphatase. Circ Res 101:712–722. doi: 10.1161/CIRCRESAHA.107.153981 PubMedGoogle Scholar
  119. 119.
    Takata F, Dohgu S, Nishioku T, Takahashi H, Harada E, Makino I, Nakashima M, Yamauchi A, Kataoka Y (2009) Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neurosci Lett 449:71–75. doi: 10.1016/j.neulet.2008.10.082 PubMedGoogle Scholar
  120. 120.
    Serebryakov V, Zakharenko S, Snetkov V, Takeda K (1994) Effects of prostaglandins E1 and E2 on cultured smooth muscle cells and strips of rat aorta. Prostaglandins 47:353–365PubMedGoogle Scholar
  121. 121.
    Jadhav V, Jabre A, Lin SZ, Lee TJ (2004) EP1- and EP3-receptors mediate prostaglandin E2-induced constriction of porcine large cerebral arteries. J Cereb Blood Flow Metab 24:1305–1316. doi: 10.1097/01.WCB.0000139446.61789.14 PubMedGoogle Scholar
  122. 122.
    Takizawa S, Hogan M, Hakim AM (1991) The effects of a competitive NMDA receptor antagonist (CGS-19755) on cerebral blood flow and pH in focal ischemia. J Cereb Blood Flow Metab 11:786–793. doi: 10.1038/jcbfm.1991.136 PubMedGoogle Scholar
  123. 123.
    Nehls DG, Park CK, MacCormack AG, McCulloch J (1990) The effects of N-methyl-D-aspartate receptor blockade with MK-801 upon the relationship between cerebral blood flow and glucose utilisation. Brain Res 511:271–279PubMedGoogle Scholar
  124. 124.
    Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363–389. doi: 10.1016/j.neuropharm.2007.12.007 PubMedGoogle Scholar
  125. 125.
    Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, Perez-Pinzon MA (2005) Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 82:665–673. doi: 10.1002/jnr.20674 PubMedGoogle Scholar
  126. 126.
    Douen AG, Akiyama K, Hogan MJ, Wang F, Dong L, Chow AK, Hakim A (2000) Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes. J Neurochem 75:812–818PubMedGoogle Scholar
  127. 127.
    Johns L, Sinclair AJ, Davies JA (2000) Hypoxia/hypoglycemia-induced amino acid release is decreased in vitro by preconditioning. Biochem Biophys Res Commun 276:134–136. doi: 10.1006/bbrc.2000.3443 PubMedGoogle Scholar
  128. 128.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286. doi: 10.1038/nrd2115 PubMedGoogle Scholar
  129. 129.
    Lay CC, Davis MF, Chen-Bee CH, Frostig RD (2010) Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke. PLoS One 5:e11270. doi: 10.1371/journal.pone.0011270 PubMedGoogle Scholar
  130. 130.
    Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10:136–141PubMedGoogle Scholar
  131. 131.
    Choi SA, Kim EH, Lee JY, Nam HS, Kim SH, Kim GW, Lee BI, Heo JH (2007) Preconditioning with chronic cerebral hypoperfusion reduces a focal cerebral ischemic injury and increases apurinic/apyrimidinic endonuclease/redox factor-1 and matrix metalloproteinase-2 expression. Curr Neurovasc Res 4:89–97PubMedGoogle Scholar
  132. 132.
    Bullitt E, Rahman FN, Smith JK, Kim E, Zeng D, Katz LM, Marks BL (2009) The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography. AJNR Am J Neuroradiol 30:1857–1863. doi: 10.3174/ajnr.A1695 PubMedGoogle Scholar
  133. 133.
    Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12:110–119. doi: 10.1038/jcbfm.1992.14 PubMedGoogle Scholar
  134. 134.
    Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046PubMedGoogle Scholar
  135. 135.
    Zhang F, Wu Y, Jia J (2011) Exercise preconditioning and brain ischemic tolerance. Neuroscience 177:170–176. doi: 10.1016/j.neuroscience.2011.01.018 PubMedGoogle Scholar
  136. 136.
    Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20:2926–2933PubMedGoogle Scholar
  137. 137.
    Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472. doi: 10.1016/j.tins.2007.06.011 PubMedGoogle Scholar
  138. 138.
    Tang K, Xia FC, Wagner PD, Breen EC (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170:16–22. doi: 10.1016/j.resp.2009.10.007 PubMedGoogle Scholar
  139. 139.
    Zhao Y, Zhao B (2010) Protective effect of natural antioxidants on heart against ischemia-reperfusion damage. Curr Pharm Biotechnol 11:868–874PubMedGoogle Scholar
  140. 140.
    Watson BD, Prado R, Mirzabeigi M, Veloso A, Morales A (2003) A tissue plasminogen activator (reteplase) augments the efficacies of UV laser-facilitated dethrombosis in recanalizing aged platelet and platelet-rich occlusive thrombi in rat middle cerebral artery. J Cereb Blood Flow Metab 23:279Google Scholar
  141. 141.
    Watson BD, Prado R, Veloso A, Brunschwig JP, Dietrich WD (2002) Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke. Stroke 33:428–434PubMedGoogle Scholar
  142. 142.
    Yang GY, Betz AL (1994) Reperfusion-induced injury to the blood–brain barrier after middle cerebral artery occlusion in rats. Stroke 25:1658–1664, discussion 1664–1655PubMedGoogle Scholar
  143. 143.
    Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17:1048–1056. doi: 10.1097/00004647-199710000-00006 PubMedGoogle Scholar
  144. 144.
    Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26:1114–1121. doi: 10.1038/sj.jcbfm.9600348 PubMedGoogle Scholar
  145. 145.
    Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H (2008) The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 105:943–955. doi: 10.1111/j.1471-4159.2008.05218.x PubMedGoogle Scholar
  146. 146.
    Zhao H (2009) Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 29:873–885. doi: 10.1038/jcbfm.2009.13 PubMedGoogle Scholar
  147. 147.
    Gao X, Ren C, Zhao H (2008) Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res 86:2505–2511. doi: 10.1002/jnr.21703 PubMedGoogle Scholar
  148. 148.
    Bonini PA, Banfi G, Murone M (1990) Enhanced chemiluminescence in the measurement of proteins and haptens: evaluation of choriogonadotropin (hCG) and free thyroxin. J Biolumin Chemilumin 5:193–195. doi: 10.1002/bio.1170050309 PubMedGoogle Scholar
  149. 149.
    Xing C, Hayakawa K, Lok J, Arai K, Lo EH (2012) Injury and repair in the neurovascular unit. Neurol Res 34:325–330. doi: 10.1179/1743132812Y.0000000019 PubMedGoogle Scholar
  150. 150.
    Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi: 10.1016/j.neuron.2008.01.003 PubMedGoogle Scholar
  151. 151.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  152. 152.
    del Zoppo GJ, von Kummer R, Hamann GF (1998) Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry 65:1–9PubMedGoogle Scholar
  153. 153.
    Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood–brain barrier dysfunction in stroke. Neuroscience 151:340–351. doi: 10.1016/j.neuroscience.2007.10.006 PubMedGoogle Scholar
  154. 154.
    Hamann GF, Burggraf D, Martens HK, Liebetrau M, Jager G, Wunderlich N, DeGeorgia M, Krieger DW (2004) Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 35:764–769. doi: 10.1161/01.STR.0000116866.60794.21 PubMedGoogle Scholar
  155. 155.
    Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163–1172. doi: 10.1097/00004647-199811000-00001 PubMedGoogle Scholar
  156. 156.
    Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H (2008) Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One 3:e3851. doi: 10.1371/journal.pone.0003851 PubMedGoogle Scholar
  157. 157.
    Pan W, Kastin AJ (2007) Tumor necrosis factor and stroke: role of the blood–brain barrier. Prog Neurobiol 83:363–374. doi: 10.1016/j.pneurobio.2007.07.008 PubMedGoogle Scholar
  158. 158.
    Watters O, O’Connor JJ (2011) A role for tumor necrosis factor-alpha in ischemia and ischemic preconditioning. J Neuroinflammation 8:87. doi: 10.1186/1742-2094-8-87 PubMedGoogle Scholar
  159. 159.
    Franzen B, Duvefelt K, Jonsson C, Engelhardt B, Ottervald J, Wickman M, Yang Y, Schuppe-Koistinen I (2003) Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-alpha. Brain Res Mol Brain Res 115:130–146PubMedGoogle Scholar
  160. 160.
    Yin L, Ye S, Chen Z, Zeng Y (2012) Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice. Int J Neurosci 122:748–756. doi: 10.3109/00207454.2012.721827 PubMedGoogle Scholar
  161. 161.
    Ding YH, Young CN, Luan X, Li J, Rafols JA, Clark JC, McAllister JP 2nd, Ding Y (2005) Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol 109:237–246. doi: 10.1007/s00401-004-0943-y PubMedGoogle Scholar
  162. 162.
    Guo M, Lin V, Davis W, Huang T, Carranza A, Sprague S, Reyes R, Jimenez D, Ding Y (2008) Preischemic induction of TNF-alpha by physical exercise reduces blood–brain barrier dysfunction in stroke. J Cereb Blood Flow Metab 28:1422–1430. doi: 10.1038/jcbfm.2008.29 PubMedGoogle Scholar
  163. 163.
    Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27:1663–1674. doi: 10.1038/sj.jcbfm.9600464 PubMedGoogle Scholar
  164. 164.
    Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP (2004) Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35:2576–2581. doi: 10.1161/01.STR.0000143450.04438.ae PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kunjan R. Dave
    • 2
  • John W. Thompson
    • 2
  • Jake T. Neumann
    • 2
  • Miguel A. Perez-Pinzon
    • 1
  • Hung W. Lin
    • 2
  1. 1.The Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA
  2. 2.The Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of MedicineUniversity of MiamiMiamiUSA

Personalised recommendations