Skip to main content

Diabetic Nephropathy

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

Diabetes mellitus (DM) is the most frequent cause of severe chronic kidney disease (CKD) and is the leading cause of end-stage renal disease (ESRD) in Western countries. It occurs in 20–40% of patients with diabetes and is associated with great morbidity and mortality. Even in developed countries, fewer than 1 in 20 patients with DM and CKD survive to ESRD, succumbing due to cardiovascular disease (CVD), heart failure or infection, and the severity of diabetic renal disease significantly contributes to this outcome. Diabetic nephropathy is a specific renal condition characterized by hyperfiltration, persistent albuminuria of >300 mg/day, continuous decline in the glomerular filtration rate (GFR), raised arterial blood pressure (BP), and enhanced cardiovascular morbidity and mortality. Early diagnosis and appropriate management, especially when associated with control of glycemia, blood pressure and other comorbidities, may be related to better outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboud H, Henrich WL. Stage IV chronic kidney disease. N Engl J Med. 2010;362:56–65.

    Article  PubMed  Google Scholar 

  2. Garcia GG, Harden P, Chapman J. The global role of kidney transplantation. Adv Chronic Kidney Dis. 2012;19(2):53–8.

    Article  Google Scholar 

  3. Gilbertson DT, Liu J, Xue JL, Louis TA, Solid CA, Ebben JP, et al. Projecting the number of patients with end-stage renal disease in the United States to the year 2015. J Am Soc Nephrol. 2005;16:3736–41.

    Article  PubMed  Google Scholar 

  4. U.S. Renal Data System. USRDS 2011 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. 2011.

    Google Scholar 

  5. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21(9):1414–31.

    Article  PubMed  CAS  Google Scholar 

  6. Atkins RC. The epidemiology of chronic kidney disease. Kidney Int Suppl. 2005;94:S14–8.

    Article  PubMed  Google Scholar 

  7. Parving HH. Diabetic nephropathy: prevention and treatment. Kidney Int. 2001;60:2041–55.

    Article  PubMed  CAS  Google Scholar 

  8. Dwyer JP, Parving HH, Hunsicker LG, Ravid M, Remuzzi G, Lewis JB. Renal dysfunction in the presence of Normoalbuminuria in Type 2 diabetes: results from the DEMAND study. Cardiorenal Med. 2012; 2:1–10.

    Article  PubMed  CAS  Google Scholar 

  9. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342:381–9.

    Google Scholar 

  10. Rojas-Rivera J, Ortiz A, Egido J. Antioxidants in kidney diseases: the impact of bardoxolone methyl. Int J Nephrol. 2012;2012:321714.

    PubMed  Google Scholar 

  11. Vinod PB. Pathophysiology of diabetic nephropathy. Clinical Queries: Nephrology. 2012;0102:121–6.

    Article  Google Scholar 

  12. Kimmelsteil P, Wilson C. Intercapillary lesions in the glomeruli in the kidney. Am J Pathol. 1936;12:83–97.

    Google Scholar 

  13. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56: 1627–37.

    Article  PubMed  CAS  Google Scholar 

  14. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556.

    Article  PubMed  Google Scholar 

  15. Halimi JM. The emerging concept of chronic kidney disease without clinical proteinuria in diabetic patients. Diabetes Metab. 2012;38(4):291–7. http://dx.doi.org/10.1016/j.diabet.2012.04.001.

    Article  PubMed  CAS  Google Scholar 

  16. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64). Kidney Int. 2003;63:225–32.

    Article  PubMed  Google Scholar 

  17. Gross J, Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz TL. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:176–88.

    Article  Google Scholar 

  18. Ntemka A, Iliadis F, Papanikolaou NA, Grekas D. Network-centric analysis of genetic predisposition in diabetic nephropathy. Hippokratia. 2011;15(3):232–7.

    PubMed  CAS  Google Scholar 

  19. Grams M, Coresh J. Proteinuria and risk of acute kidney injury. Lancet. 2010;376(9758):2046–8.

    Article  PubMed  Google Scholar 

  20. Gansevoort RT, Matsushita K, Van Der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes in both general and high-risk populations. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93–104.

    Article  PubMed  CAS  Google Scholar 

  21. Padala S, Tighiouart H, Inker LA, Contrera G, Beck GJ, Lewis J. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. Am J Kidney Dis. 2012;60(2):217–24.

    Article  PubMed  Google Scholar 

  22. Stephenson JM, Fuller JH. Microalbuminuria is not rare before 5 years of IDDM: EURODIAB IDDM Complications Study Group and the WHO Multinational Study of Vascular Disease in Diabetes Study Group. J Diabetes Complications. 1994;8:166–73.

    Article  PubMed  CAS  Google Scholar 

  23. Schultz CJ, Konopelska-Bahu T, Dalton RN, Carroll TA, Stratton I, Gale EA, et al. Microalbuminuria prevalence varies with age, sex, and puberty in children with type 1 diabetes followed from diagnosis in a longitudinal study: Oxford Regional Prospective Study Group. Diabetes Care. 1999;22:495–502.

    Article  PubMed  CAS  Google Scholar 

  24. National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(Suppl):S25–119.

    Google Scholar 

  25. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2012;35 suppl 1:s11–63.

    Google Scholar 

  26. Archibald G, Bartlett W, Brown A, Christie B, Elliott A, Griffith K et al. UK consensus conference on early chronic kidney disease. Nephrol Dial Transplant. 2007;22(suppl 9):ix4–ix5.

    Google Scholar 

  27. Buckalew Jr VM, Freedman BI. Effects of race on albuminuria and risk of cardiovascular and kidney disease. Expert Rev Cardiovasc Ther. 2011;9(2):245–9.

    Article  PubMed  Google Scholar 

  28. Ruggenenti P, Remuzzi G. Time to abandon microalbuminuria? Kidney Int. 2006;70(7):1214–22.

    Article  PubMed  CAS  Google Scholar 

  29. Kumar J, Sahai G. Non-diabetic renal diseases in diabetics. Clinical Queries: Nephrology. 2012;0102:172–7.

    Article  Google Scholar 

  30. Kaur H, Prabhakar S. Novel therapies of diabetic nephropathy. Nephrology Reviews. 2011;3:e4.

    Article  Google Scholar 

  31. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  32. Patel A, MacMahon S, Chalmers J, Neal B, Billot L. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  PubMed  CAS  Google Scholar 

  33. Friedewald WT, Buse JB, Bigger JT, Byington RP, Cushman RP, Gerstein HC, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  PubMed  Google Scholar 

  34. Abe M, Okada K, Soma M. Antidiabetic agents in patients with chronic kidney disease and end-stage renal disease on dialysis: metabolism and clinical practice. Curr Drug Metab. 2011;12(1):57–69.

    Article  PubMed  CAS  Google Scholar 

  35. Van Buren PN, Toto R. Hypertension in diabetic nephropathy: epidemiology mechanisms, and management. Adv Chronic Kidney Dis. 2011;18(1): 28–41.

    Article  PubMed  Google Scholar 

  36. U.K. Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13.

    Article  Google Scholar 

  37. NICE. Chronic kidney disease: early identification and management of CKD in adults in primary and secondary care. London: NICE; 2008 (CG73). www.nice.org.uk/CG073.

  38. Bakris GL, Williams M, Dworkin L, Elliot WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36:646–61.

    Article  PubMed  CAS  Google Scholar 

  39. Remuzzi G, Macia M, Ruggenenti P. Prevention and treatment of diabetic renal disease in type 2 diabetes: the BENEDICT study. J Am Soc Nephrol. 2006;17 Suppl 2:S90–7.

    Article  PubMed  Google Scholar 

  40. Haller H, Ito S, Izzo Jr JL, Januszewicz A, Katayama S, Menne J, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17.

    Article  PubMed  CAS  Google Scholar 

  41. Strippoli G, Craig M, Craig J. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev. 2005;4, CD004136.

    PubMed  Google Scholar 

  42. The ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med. 2001;134: 370–9.

    Article  Google Scholar 

  43. Irbesartan Diabetic Nephropathy Trial. Collaborative Study Group. Cardiovascular outcomes in the Irbesartan diabetic nephropathy trial of patients with type 2 diabetes and overt nephropathy. Ann Intern Med. 2003;138:542–9.

    Article  Google Scholar 

  44. Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(1):40–51.

    Article  PubMed  CAS  Google Scholar 

  45. de Galan BE, Perkovic V, Ninomiya T, Pillai A, Patel A, Cass A, et al. Lowering blood pressure reduces renal events in type 2 diabetes. J Am Soc Nephrol. 2009;20:883–92.

    Article  PubMed  Google Scholar 

  46. Lipmann ML, Schiffrin EL. What is the ideal blood pressure goal for patients with diabetes mellitus and nephropathy? Curr Cardiol Rep. 2012;14(6):651–9.

    Article  Google Scholar 

  47. Andersen NH, Poulsen PL, Knudsen ST, Poulsen SH, Eiskjær H, Hansen KW, et al. Long-term dual blockade with candesartan and lisinopril in hypertensive patients with diabetes: the CALM II study. Diabetes Care. 2005;28:273–7.

    Article  PubMed  CAS  Google Scholar 

  48. ON TARGET Investigators. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  Google Scholar 

  49. Tomson C, Bailey P. Management of chronic kidney disease. Medicine. 2011;39(7):407–13.

    Article  Google Scholar 

  50. Ortega LM, Nayer A. Repercussions of early versus late initiation. Nefrologia. 2011;31(4):392–6.

    PubMed  CAS  Google Scholar 

  51. Vassalotti JA, Stevens LA, Levey S. Testing for chronic kidney disease: a position statement from the national kidney foundation. Am J Kidney Dis. 2007;50(2):169–80.

    Article  PubMed  CAS  Google Scholar 

  52. Freedman BI, Andries L, Shihabi ZK, Rocco MV, Byers JR, Cardona CY, et al. Glycated albumin and risk of death and hospitalizations in diabetic dialysis patients. Clin J Am Soc Nephrol. 2011;6:1635–43.

    Article  PubMed  CAS  Google Scholar 

  53. Vilayur E, Harris DC. Emerging therapies for chronic kidney disease: What is their role? Nat Rev Nephrol. 2009;5:375–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba Bandeira M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bandeira, E., Queiroz, D. (2014). Diabetic Nephropathy. In: Bandeira, F., Gharib, H., Golbert, A., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8684-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8684-8_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8683-1

  • Online ISBN: 978-1-4614-8684-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics