Classification and Laboratory Diagnosis of Diabetes Mellitus

  • Shui Boon Soh
  • Duncan Topliss


Diabetes mellitus (DM) is a growing problem worldwide, resulting in enormous economic burdens for many countries. Over the years, there had been several changes in the classification of DM, due to its heterogeneous clinical and genetic nature. Though DM is traditionally diagnosed by oral glucose tolerance test (OGTT), there is a growing practice of utilization of glycated hemoglobin (HbA1c) as the diagnostic tool in the recent years. This chapter aims to cover the clinical stages, classification and types, as well as the laboratory diagnosis of DM.


Gestational Diabetes Mellitus Fasting Plasma Glucose Oral Glucose Tolerance Test Glutamic Acid Decarboxylase Islet Cell Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aroda VR, Ratner R. Approach to the patient with prediabetes. J Clin Endocrinol Metab. 2008;93: 3259–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Lancet. 1936;1:117.Google Scholar
  3. 3.
    Bornstein J, Lawrence RD. Plasma insulin in human diabetes mellitus. Br Med J. 1951;2:1541–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Berson SA, Yalow RS. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960;39: 1157–75.PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organization. Second report of the WHO expert committee on diabetes mellitus. Technical report series no. 646. Geneva, Switzerland; 1980.Google Scholar
  6. 6.
    Definition, diagnosis and classification of diabetes mellitus and its complications—report of a WHO consultation 1999 (WHO/NCD/NCS 99.2).Google Scholar
  7. 7.
    American Diabetes Association Expert Committee. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  8. 8.
    Kaprio J, Tuomilehto J, Koskenuo M, Romanov K, Reunanen A, Eriksson J, et al. Concordance for type 1 (insulin-dependent) and type 2 (insulin-independent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992;35:1060–7.PubMedCrossRefGoogle Scholar
  9. 9.
    UKPDS. Overview of six years’ therapy of type 2 diabetes—a progressive disease. Diabetes. 1995;44: 1248–58.CrossRefGoogle Scholar
  10. 10.
    Leslie RD, Williams R, Pozzilli P. Clinical review: type 1 diabetes and latent autoimmune diabetes in adults: one end of the rainbow. J Clin Endocrinol Metab. 2006;91:1654–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Stenstrom G, Gottsater A, Bakhtadz E, Berger B, Sundkvist G. Latent autoimmune diabetes in adults. Diabetes. 2005;54:S68–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Pozzilli P, Di Mario U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care. 2001;24:1460–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Umpierrez GE, Smiley D, Kitabchi AE. Narrative review: ketosis-prone type 2 diabetes mellitus. Ann Intern Med. 2006;144:350–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Mauvais-Jarvis F, Sobngwi E, Porcher R, Riveline J-P, Kevorkian J-P, Vaisse C, et al. Ketosis-prone type 2 diabetes in patients of sub-Saharan African origin: clinical pathophysiology and natural history of β-cell dysfunction and insulin resistance. Diabetes. 2004;53: 645–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Umpierrez GE, Casals MM, Gebhart SP, Mixon PS, Clark WS, Phillips LS. Diabetes ketoacidosis in obese African-Americans. Diabetes. 1995;44:790–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Banerji MA, Chaiken RL, Lebovitz HE. Long-term normoglycemic remission in black newly diagnosed NIDDM subjects. Diabetes. 1996;45:337–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Umpierrez GE, Clark WS, Steen MT. Sulphonylurea treatment prevents recurrence of hyperglycemia in obese African-American patients with a history of hyperglycemic crises. Diabetes Care. 1997;20:479–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones A, Hattersley AT. Monogenic causes of diabetes. Textbook of diabetes. 4th ed. UK: Wiley-Blackwell. p. 2010;245–64.Google Scholar
  19. 19.
    Ellard S, Colclough K. Mutations in the genes encoding the transcription factors HNF1α and 4α in maturity onset diabetes of the young. Hum Mutat. 2006;27:854–69.PubMedCrossRefGoogle Scholar
  20. 20.
    Gloyn AL. Glucokinase mutations in hyper and hypoglycemia: maturity onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat. 2003;22:353–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Ellard A, Thomas K, Edghill EL, Owens M, Ambye L, Cropper J, et al. Partial and whole gene deletion mutations of the GCK and HNF1α genes in maturity onset diabetes of the young. Diabetologia. 2007;50:2313–7.PubMedCrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus (position statement). Diabetes Care. 2009;32(Supp 1):S62–7.CrossRefGoogle Scholar
  25. 25.
    National Center for Health Statistics, National Diabetes Fact Sheet. Centers for Disease Control and Prevention. 2011. Accessed 21 Aug 2012.
  26. 26.
    Omori Y, Jovanovic L. Proposal for the reconsideration of the definition of gestational diabetes. Diabetes Care. 2005;28:2592–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Schaefer UM, Songster G, Xiang A, Berkowitz K, Buchanan TA, Kjos SL. Congenital malformations in the offspring of women with hyperglycemia first detected during pregnancy. Am J Obstet Gynecol. 1997;177:1165–71.PubMedCrossRefGoogle Scholar
  28. 28.
    International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010; 3: 676–82.Google Scholar
  29. 29.
    Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002.CrossRefGoogle Scholar
  30. 30.
    Centers for Disease Control and Prevention: National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011.Google Scholar
  31. 31.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus (position statement). Diabetes Care. 2012;35(Supp 1):S64–71.CrossRefGoogle Scholar
  32. 32.
    Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Report of a WHO/IDF consultation. 2006; 1–47.Google Scholar
  33. 33.
    International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009; 32: 1327–34.Google Scholar
  34. 34.
    Use of glycated hemoglobin (HbA1c) in the diagnosis of diabetes mellitus—abbreviated report of a WHO consultation. 2011. p. 1–25.Google Scholar
  35. 35.
    Mikesh LM, Bruns DE. Stabilization of glucose in blood specimens: mechanism of delay in fluoride inhibition of glycolysis. Clin Chem. 2008;54:930–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Bruns DE, Knowler WC. Stabilization of glucose in blood samples: why it matters. Clin Chem. 2009;55: 850–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Tahara Y, Shima K. The response of glycated hemoglobin to stepwise plasma glucose change over time in diabetic patients. Diabetes Care. 1993;16:1313–4.PubMedGoogle Scholar
  38. 38.
    Little RR, Rohlfing CL, Wiedmeyer HM, Myers GL, Sacks DB, Goldstein DE. The national glycohemoglobin standardization program: a five-year progress report. Clin Chem. 2001;47:1985–92.PubMedGoogle Scholar
  39. 39.
    Hoelzel W, Weykamp C, Jeppsson JO, Miedema K, Barr JR, Goodall I, et al. IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin Chem. 2004;50:166–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1c. Diabetes Care. 2011;34 Suppl 2:S184–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the AIC assay into estimated average glucose values. Diabetes Care. 2008;31(8): 1473–8.PubMedCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Sacks DB. AIC versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Inzucchi SE. Diagnosis of diabetes. N Engl J Med. 2012;367:542–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97(4):1067–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Casparie AF, Miedema K. Glycosylated hemoglobin in diabetes and renal failure. Lancet. 1977;2(8041): 758–9.PubMedCrossRefGoogle Scholar
  47. 47.
    De Boer MJ, Miedema K, Casparie AF. Glycosylated hemoglobin in renal failure. Diabetologia. 1980;18(6): 437–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Eschbach Jr JW, Funk D, Adamson J, Kuhn I, Scribner BH, Finch CA. Erythropoiesis in patients with renal failure undergoing chronic dialysis. N Engl J Med. 1967;276:653–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRefGoogle Scholar
  50. 50.
    Weinstock RS, Zygmont SV. Endotext diabetes and carbohydrate metabolism chapter 5: pancreatic islet function tests. 2010. Accessed 21 Aug 2012.Google Scholar
  51. 51.
    Delli AJ, Larsson HE, Ivarsson SA, Lernmark AK, Kong APS, Chan JCN. Type 1 diabetes. Textbook of diabetes. 4th ed. UK: Wiley-Blackwell. p. 141–52.Google Scholar
  52. 52.
    Lee YS, Ng WY, Thai AC, Lui KF, Loke KY. Prevalence of ICA and GAD antibodies at initial presentation of type 1 diabetes mellitus in Singapore children. J Pediatr Endocrinol Metab. 2001;14:767–72.PubMedGoogle Scholar
  53. 53.
    Sanjeev CB, Hagopian WA, Landin-Olsson M, Kockum I, Woo W, Palmer JP, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens. 1998;51:281–6.CrossRefGoogle Scholar
  54. 54.
    Vardi P, Ziegler AG, Mathews JH, Dib S, Kller RJ, Ricker AT, et al. Concentration of insulin autoantibodies at onset of type 1 diabetes: inverse log-linear correlation with age. Diabetes Care. 1998;11:736–9.Google Scholar
  55. 55.
    Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes. 2002;51:1346–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Barker JM, Barriga KJ, Yu LP, Miao DM, Erlich HA, Norris JM, et al. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab. 2004;89:3896–902.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Endocrinology and DiabetesThe AlfredMelbourneAustralia

Personalised recommendations