Development of Glass-Based Solid Electrolytes for Lithium-Ion Batteries

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The development of glass-based solid electrolytes for lithium-ion batteries is reviewed. Strategies for preparing glass electrolytes with high Li+ ion conductivity are as follows: increase in Li+ ion concentration, change from oxide matrix to a sulfide one, and stabilization at room temperature of high-temperature or metastable phase by crystallization of glass. Glass electrolytes with high Li+ ion concentration were prepared by rapid quenching and mechanochemical techniques. Oxysulfide glasses in a Li2S-SiS2-Li4SiO4 system and sulfide glass ceramics in a Li2S-P2S5 system are suitable as solid electrolytes with a high ion conductivity of 10−3 S cm−1 at room temperature and a wide electrochemical window of more than 5 V. The sulfide glass-based compounds were applied as solid electrolytes to bulk-type, all-solid-state rechargeable lithium batteries. The solid-state batteries using Li4Ti5O12 active material exhibited a high rate capability with excellent cyclability for 700 cycles at a high temperature of 100 °C.

Keywords

Crystallization Quartz Phosphorus Graphite Sulfide 

References

  1. 1.
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  2. 2.
    C. Julien, G.A. Nazri, Solid State Batteries: Materials Design and Optimization (Kluwer Academic Publishers, Boston, 1994)CrossRefGoogle Scholar
  3. 3.
    T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya, I. Tanaka, Solid State Ionics for Batteries (Springer, Tokyo, 2005)CrossRefGoogle Scholar
  4. 4.
    H.L. Tuller, D.P. Button, D.R. Uhlmann, Fast ion transport in oxide glasses. J. Non-Cryst. Solids 40, 93–118 (1980)CrossRefGoogle Scholar
  5. 5.
    A.D. Robertson, A.R. West, A.G. Ritchie, Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ion. 104, 1–11 (1997)CrossRefGoogle Scholar
  6. 6.
    J.W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power. Sources 195, 4554–4569 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Ito, Y. Inaguma, W.H. Jung, L. Chen, T. Nakamura, High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm). Solid State Ion. 70–71, 203–207 (1994)CrossRefGoogle Scholar
  8. 8.
    H. Aono, E. Sugimono, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990)CrossRefGoogle Scholar
  9. 9.
    R. Murugan, W.W. Thangadural, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Tatsumisago, N. Machida, T. Minami, Mixed anion effect in conductivity of rapidly quenched Li4SiO4-Li3BO3 glasses. J. Ceram. Soc. Jpn 95, 197–201 (1987)Google Scholar
  11. 11.
    X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997)CrossRefGoogle Scholar
  12. 12.
    K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo, Thin film solid electrolyte and its application to secondary lithium cell. Solid State Ion. 9–10, 1445–1448 (1983)CrossRefGoogle Scholar
  13. 13.
    J. Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ion. 96, 195–200 (1997)CrossRefGoogle Scholar
  14. 14.
    J. Fu, Fast Li+ ion conducting glass-ceramics in the sytem Li2O-Al2O3-GeO2-P2O5. Solid State Ion. 104, 191–194 (1997)CrossRefGoogle Scholar
  15. 15.
    R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON; the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Ribes, B. Barrau, J.L. Souquet, Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X = Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems. J. Non-Cryst. Solids 38–39, 271–276 (1980)CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, J.H. Kennedy, Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems. Solid State Ion. 38, 217–224 (1990)CrossRefGoogle Scholar
  18. 18.
    H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller, Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Mater. Res. Bull 18, 189–193 (1983)CrossRefGoogle Scholar
  19. 19.
    N. Aotani, K. Iwamoto, K. Takada, S. Kondo, Synthesis and electrochemical properties of lithium ion conductive glass, Li3PO4-Li2S-SiS2. Solid State Ion. 68, 35–39 (1994)CrossRefGoogle Scholar
  20. 20.
    K. Hirai, M. Tatsumisago, T. Minami, Thermal and electrical properties of rapidly quenched glasses in the system Li2S-SiS2-LixMOy (LixMOy = Li4SiO4, Li2SO4). Solid State Ion. 78, 269–273 (1995)CrossRefGoogle Scholar
  21. 21.
    F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid State Ion. 177, 2721–2725 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Hayashi, K. Minami, S. Ujiie, M. Tatsumisago, Preparation and ionic conductivty of Li7P3S11-z glass-ceramic electrolytes. J. Non-Cryst. Solids 356, 2670–2673 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 182, 116–119 (2011)CrossRefGoogle Scholar
  24. 24.
    N. Machida, T. Minami, Electrical properties of superionic conducting glasses in the pseudobinary system CuI-Cu2MoO4. J. Am. Ceram. Soc. 71, 784–788 (1988)CrossRefGoogle Scholar
  25. 25.
    H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 21, 118–124 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Tatsumisago, T. Saito, T. Minami, Stabilization of α-AgI at room temperature by heating of AgI-Ag2O-MoO3 glasses. Chem. Lett. 790–791 (2001).Google Scholar
  27. 27.
    M. Tatsumisago, T. Minami, Lithium ion conducting glasses prepared by rapid quenching. Mater. Chem. Phys. 18, 1–17 (1987)CrossRefGoogle Scholar
  28. 28.
    Y. Sakurai, A. Sakuda, A. Hayashi, M. Tatsumisago, Preparation of amorphous Li4SiO4-Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries. Solid State Ion. 182, 59–63 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001)CrossRefGoogle Scholar
  30. 30.
    T. Minami, A. Hayashi, M. Tatsumisago, Preparation and characterization of lithium ion-conducting oxysulfide glasses. Solid State Ion. 136–137, 1015–1023 (2000)CrossRefGoogle Scholar
  31. 31.
    T. Minami, A. Hayashi, M. Tatsumisago, Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ion. 177, 2715–2720 (2006)CrossRefGoogle Scholar
  32. 32.
    Y. Kim, J. Saienga, S.W. Martin, Anomalous ionic conductivity increase in Li2S + GeS2 + GeO2 glasses. J. Phys. Chem. B 110, 16318–16325 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Hayashi, M. Tatsumisago, T. Minami, Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2S · 0.4SiS2) · xLi4SiO4 oxysulfide glasses. J. Electrochem. Soc. 146, 3472–3475 (1999)CrossRefGoogle Scholar
  34. 34.
    H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago, Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Iwamoto, N. Aotani, K. Takada, S. Kondo, Rechargeable solid state battery with lithium conductive glass, Li3PO4-Li2S-SiS2. Solid State Ion. 70–71, 658–661 (1994)CrossRefGoogle Scholar
  36. 36.
    K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago, Electrical and electrochemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5. Solid State Ion. 192, 122–125 (2011). doi: 10.1016/j.ssi.2010.06.018 Google Scholar
  37. 37.
    N. Machida, K. Kobayashi, Y. Nishikawa, T. Shigematsu, Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ion. 175, 247–250 (2004)CrossRefGoogle Scholar
  38. 38.
    A. Hayashi, T. Ohtomo, F. Mizuno, K. Tadanaga, M. Tatsumisago, All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003)CrossRefGoogle Scholar
  39. 39.
    M. Nagao, A. Hayashi, M. Tatsumisago, Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim. Acta. 56, 6055–6059 (2011)Google Scholar
  40. 40.
    A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, M. Tatsumisago, All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J. Power. Sources 183, 422–426 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied ChemistryOsaka Prefecture UniversitySakaiJapan

Personalised recommendations