Skip to main content

Nano Aspects of Metal–Air Batteries

  • Chapter
  • First Online:
Nanoscale Technology for Advanced Lithium Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

  • 3999 Accesses

Abstract

A metal–air battery is composed of a metal electrode and an air electrode as negative and positive electrodes, respectively, and provides a large capacity and, hence, high energy density. Aqueous and nonaqueous electrolyte solutions are used depending on the kind of metal electrode material such as zinc, iron, aluminum, magnesium, or lithium. The reversibility and stability of both metal and air electrodes are issues that need to be resolved. The use of zinc and iron nanoparticles is effective for improving the morphology changes and electrical conductivity. Nanotechnology applied to air electrodes includes carbon nanotubes and related materials as a conductive electrode substrate and nanoparticle catalysts for oxygen reduction and evolution reactions. Recent results on nonaqueous lithium systems are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.P. Hamlen, Metal/air batteries, in Handbook of Batteries, ed. by D. Linden, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  2. H. Arai, M. Hayashi, Secondary batteries – metal-air systems, overview (Secondary and prmary), in Encyclopedia of Electrochemical Power Sources, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati, vol. 4 (Elsevier, Amsterdam, 2009)

    Google Scholar 

  3. H. Arai, S. Müller, O. Haas, AC impedance analysis of bifunctional air electrodes for metal-air batteries. J. Electrochem. Soc. 147, 3584–3591 (2000)

    Article  CAS  Google Scholar 

  4. T. Sakai, T. Iwaki, Z. Ye, D. Noréus, O. Lindström, Air-metal hydride battery construction and evaluation. J. Electrochem. Soc. 142, 4040–4045 (1995)

    Article  CAS  Google Scholar 

  5. R. Jain, T.C. Adler, F.R. McLarnon, E.J. Cairns, Development of long-lived high-performance zinc-calcium/nickel oxide cells. J. Appl. Electrochem. 22, 1039–1048 (1992)

    Article  CAS  Google Scholar 

  6. T.C. Adler, F.R. McLarnon, E.J. Cairns, Low-zinc-solubility electrolyte for use in zinc/nickel oxide cells. J. Electrochem. Soc. 140, 289–294 (1993)

    Article  CAS  Google Scholar 

  7. S. Müller, F. Holzer, O. Haas, Optimized zinc electrode for the rechargeable zinc-air battery. J. Appl. Electrochem. 28, 895–898 (1998)

    Article  Google Scholar 

  8. J.Z. Wu, J.P. Tu, Y.F. Yuan, X.L. Wang, L. Zhang, R.L. Li, J. Zhang, Ag-modification improving the electrochemical performance of ZnO anode for Ni/Zn secondary batteries. J. Alloys Compd. 479, 624–628 (2009)

    Article  CAS  Google Scholar 

  9. C.C. Yang, W.C. Chien, P.W. Chen, C.Y. Wu, Synthesis and characterization of nano-sized calcium zincate powder and its application to Ni-Zn batteries. J. Appl. Electrochem. 39, 39–44 (2009)

    Article  Google Scholar 

  10. M. Ma, J.P. Tu, Y.F. Yuan, X.L. Wang, K.F. Li, M.F., Z.Y. Zeng, Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J. Power Sources 179, 395–400 (2008)

    Google Scholar 

  11. S. Martirosyan, Zinc electrode with reduced dendritic propagation. J. Power Sources 172, 984–987 (2007)

    Article  CAS  Google Scholar 

  12. K. Vijayamohanan, T.S. Balasubramanian, A.K. Shukla, Rechargeable alkaline iron electrodes. J. Power Sources 34, 269–285 (1991)

    Article  CAS  Google Scholar 

  13. L. Öjefors, Self-discharge of the alkaline iron electrode. Electrochim. Acta 21, 263–266 (1974)

    Article  Google Scholar 

  14. R.S. Schrebler Guzmán, J.R. Vilche, A.J. Arvía, The potentiodynamic behaviour of iron in alkaline solutions. Electrochim. Acta 24, 395–403 (1979)

    Article  Google Scholar 

  15. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, London, 1966)

    Google Scholar 

  16. R.D. Armstrong, I. Baurhoo, Solution soluble species in the operation of the iron electrode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 34, 41–46 (1972)

    CAS  Google Scholar 

  17. B.T. Hang, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, S.H. Yoon, I. Mochida, The effect of carbon species on the properties of Fe/C composite for metal–air battery anode. J. Power Sources 143, 256–264 (2005)

    Article  CAS  Google Scholar 

  18. B.T. Hang, H. Hayashi, S.H. Yoon, S. Okada, J. Yamaki, Fe2O3-filled carbon nanotubes as a negative electrode for an Fe–air battery. J. Power Sources 178, 393–401 (2008)

    Article  CAS  Google Scholar 

  19. C. Li, W. Ji, J. Chen, Z. Tao, Metallic aluminum nanorods: synthesis via vapor-deposition and applications in Al/air batteries. Chem. Mater. 19, 5812–5814 (2007)

    Article  CAS  Google Scholar 

  20. W. Li, C. Li, C. Zhou, H. Ma, J. Chen, Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and Mg/air battery applications. Angew. Chem. Int. Ed. 45, 6009–6012 (2006)

    Article  CAS  Google Scholar 

  21. P.N. Ross, M. Sattler, The corrosion of carbon black anodes in alkaline electrolyte. J. Electrochem. Soc. 135, 1464–1470 (1988)

    Article  CAS  Google Scholar 

  22. L. Swette, N. Kackley, S.A. McCatty, Oxygen electrodes for rechargeable alkaline fuel cells. J. Power Sources 36, 323–339 (1991)

    Article  CAS  Google Scholar 

  23. J. Prakash, D.A. Tryk, E.B. Yeager, Kinetic investigations of oxygen reduction and evolution reactions on lead ruthenate catalysts. J. Electrochem. Soc. 146, 4145–4151 (1999)

    Article  CAS  Google Scholar 

  24. G.Q. Zhang, X.G. Zhang, Y.G. Wang, A new air electrode based on carbon nanotubes and Ag-MnO2 for metal air electrochemical cells. Carbon 42(15), 3097–3102 (2004)

    Article  CAS  Google Scholar 

  25. K. Gong, P. Yu, L. Su, S. Xiong, L. Mao, Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C 111(5), 1882–1887 (2007)

    Article  CAS  Google Scholar 

  26. Y. Qian, S. Lu, F. Gao, Synthesis of manganese dioxide/reduced graphene oxide composites with excellent electrocatalytic activity toward reduction of oxygen. Mater. Lett. 65(1), 56–58 (2011)

    Article  CAS  Google Scholar 

  27. A. Weidenkaff, S.G. Ebbinghaus, T. Lippert, Ln1-x A x CoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries. Chem. Mater. 14(4), 1797–1805 (2002)

    Article  CAS  Google Scholar 

  28. D. Thiele, E.L. Colmenarejo, B. Grobety, A. Zuettel, Synthesis of carbon nanotubes on La0.6Sr0.4CoO3 as substrate. Diam. Relat. Mater. 18(1), 34–38 (2009)

    Article  CAS  Google Scholar 

  29. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, Bi-functional oxygen electrodes using LaMnO3/LaNiO3 for rechargeable metal-air batteries. J. Electrochem. Soc. 158(5), A605–610 (2011)

    Article  CAS  Google Scholar 

  30. Y. Shimizu, K. Uemura, H. Matsuda, N. Miura, N. Yamazoe, Bi-functional oxygen electrode using large surface area Li1-xCaxCoO3 for rechargeable metal-air battery. J. Electrochem. Soc. 137, 3430–3433 (1990)

    Article  CAS  Google Scholar 

  31. M. Hayashi, H. Uemura, K. Shimanoe, N. Miura, N. Yamazoe, Enhanced electrocatalytic activity for oxygen reduction over carbon-supported LaMnO3 prepared by reverse micelle method. Electrochem. Solid State Lett. 1(6), 268–270 (1998)

    Article  CAS  Google Scholar 

  32. M. Yuasa, K. Shimanoe, Y. Teraoka, N. Yamazoe, High-performance oxygen reduction catalyst using carbon-supported La-Mn-based perovskite-type oxide. Electrochem. SolidState Lett. 14(5), A67–69 (2011)

    Article  CAS  Google Scholar 

  33. S. Imaizumi, K. Shaimanoe, Y. Teraoka, N. Miura, N. Yamazoe, Preparation of carbon-supported Perovskite-type oxides LaMn1-y Fe y O3+δ based on reverse homogeneous precipitation method. J. Electrochem. Soc. 151(10), A1559–1564 (2004)

    Article  CAS  Google Scholar 

  34. G. Zhang, J. Chen, Synthesis and application of La0.59Ca0.41CoO3 nanotubes. J. Electrochem. Soc. 152, A2069–A2073 (2005)

    Article  CAS  Google Scholar 

  35. J. Yang, J.J. Xu, Nanoporous amorphous manganese oxide as electrocatalyst for ORR in alkaline solutions. Electrochem. Commun. 5(4), 306–311 (2003)

    Article  CAS  Google Scholar 

  36. G.Q. Zhang, X.G. Zhang, MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells. Electrochim. Acta 49(6), 873–877 (2004)

    Article  CAS  Google Scholar 

  37. J.J. Han, N. Li, T.Y. Zhang, Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 193(2), 885–889 (2009)

    Article  CAS  Google Scholar 

  38. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalar, M. Srinivasan, Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries. J. Power Sources 195(13), 4350–4355 (2010)

    Article  CAS  Google Scholar 

  39. F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chem. 3, 79–84 (2011)

    Article  CAS  Google Scholar 

  40. B. Winther-Jensen, O. Winter-Jensen, M. Forsyth, D. Macfarlane, High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode. Science 321(5889), 671–674 (2008)

    Article  CAS  Google Scholar 

  41. K.M. Abraham, Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)

    Article  CAS  Google Scholar 

  42. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006)

    Article  CAS  Google Scholar 

  43. G.Q. Zhang, J.P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, E.J. Plichta, Lithium-air batteries using SWNT/CNF buckypapers as air electrodes. J. Electrochem. Soc. 157(8), A953–A956 (2010)

    Article  CAS  Google Scholar 

  44. V.M.B. Crisostomo, J.K. Ngala, S. Alia, C.H. Chen, X. Shen, S.L. Suib, A. Dobley, C. Morein, New synthetic route, characterization, and electrocatalytic activity of Nanosized manganite. Chem. Mater. 19(7), 1832–1839 (2007)

    Article  CAS  Google Scholar 

  45. G. Cheng, K. Scott, Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries. J. Power Sources 195(5), 1370–1374 (2010)

    Article  CAS  Google Scholar 

  46. Y.C. Lu, Z. Xu, H.A. Gasteiger, S. Chen, K. Hamad-Schiferli, Y. Shao-Horn, Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010)

    Article  CAS  Google Scholar 

  47. T. Zhang, S. Liu, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto, Water-stable lithium electrode and its application in aqueous lithium/air secondary batteries. Electrochemistry 78(5), 360–362 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arai, H., Doi, T. (2014). Nano Aspects of Metal–Air Batteries. In: Osaka, T., Ogumi, Z. (eds) Nanoscale Technology for Advanced Lithium Batteries. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8675-6_14

Download citation

Publish with us

Policies and ethics