Advertisement

DIC Texturing for Solvent Extraction

  • Tamara Allaf
  • Baya Berka Zougali
  • Cuong Van Nguyen
  • Mohamed Negm
  • Karim Allaf
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

Because of the natural structure of plants, which oppose resistance to penetration by any liquid, solvent extraction is very slow. The kinetics involves multiple serial steps and internal diffusion is generally the limiting process. Moreover, during the extraction of bioactive molecules from a natural product, volatile compounds are also extracted and consequently this lowers the final quality of the extract, rendering deodorization a necessity.

Instant controlled pressure drop (DIC) technology is a thermomechanical process in which raw material is exposed for a short period of time to high saturated steam pressure followed by an abrupt pressure drop towards a vacuum. This triggers the autovaporization of the volatile compounds present in the matrix, which results in an expansion of the sample and an instant cooling of the material.

DIC technology was introduced to deodorize the matrix and/or enhance solvent extraction.

Keywords

Solvent Extraction Effective Diffusivity Rosmarinic Acid Carnosic Acid Solvent Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering. Aspen Publication, USAGoogle Scholar
  2. Allaf K (1982) Transfer phenomena and industrial applications. Lebanese University Faculty of Science, BeirutGoogle Scholar
  3. Allaf K (1988) Approche à l’analyse fondamentale de l’expansion par alvéolation selon différents procédés (puffing, cuisson-extrusion…). Université de Technologie de Compiègne, Compiègne, FranceGoogle Scholar
  4. Allaf K (2002) Analysis of instantaneity in thermodynamic processes; Fundamental laws. Paper presented at the first Franco-Lebanese symposium on technologies and studies on process engineering and biochemistry, Beyrouth, 22–25 July 2002Google Scholar
  5. Allaf K, Vidal P (1989) Feasibility study of a new process of drying/swelling by instantaneous decompression towards vacuum. Chemical Engineering Department, University of Technology of Compiègne, Compiègne, FranceGoogle Scholar
  6. Allaf K, Louka N, Bouvier JM, Parent F, Forget M (1993) Procédé de traitement de produits biologiques en vue de la modification de leur texture, installations pour la mise en oeuvre d’un tel procédé et produits ainsi réalisés. 93/09728Google Scholar
  7. Allaf K, Debs-Louka E, Louka N, Abraham G (1998) Procédé de réduction ou d’élimination d’organismes, de microorganismes, de pasteurisation et de stérilisation des produits solides en morceaux ou pulvérulents et installation pour la mise en œuvre d’un tel procédé. 98/02032Google Scholar
  8. Allaf K, Besombes C, Berka-Zougali B, Kristiawan M, Sobolik V, Allaf T (2011) Instant controlled pressure drop technology in plant extraction processes. In: Lebovka N, Vorobiev E, Chemat F (eds) Enhancing extraction processes in the food industry, Contemporary food engineering series. CRC Press/Taylor & Francis Group, Dublin, Ireland, pp 255–302CrossRefGoogle Scholar
  9. Allaf T, Mounir S, Tomao V, Chemat F (2012) Instant controlled pressure drop combined to ultrasounds as innovative extraction process combination: fundamental aspects. Procedia Eng 42:1164–1181. doi: 10.1016/j.proeng.2012.07.498 CrossRefGoogle Scholar
  10. Amor BB, Lamy C, Andre P, Allaf K (2008) Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds. J Chromatogr A 1213(2):118–124. doi: 10.1016/j.chroma.2008.10.065 CrossRefGoogle Scholar
  11. Ares G, Barreiro C, Deliza R, Gámbaro A (2009) Alternatives to reduce the bitterness, astringency and characteristic flavour of antioxidant extracts. Food Res Int 42(7):871–878. doi: 10.1016/j.foodres.2009.03.006 CrossRefGoogle Scholar
  12. Arhaliass A, Legrand J, Vauchel P, Fodil-Pacha F, Lamer T, Bouvier JM (2009) The effect of wheat and maize flours properties on the expansion mechanism during extrusion cooking. Food and Bioprocess Technology 2(2):186–193. doi: 10.1007/s11947-007-0038-6. CrossRefGoogle Scholar
  13. Atti-Santos AC, Rossato M, Serafini LA, Cassel E, Moyna P (2005) Extraction of essential oils from lime (Citrus latifolia Tanaka) by hydrodistillation and supercritical carbon dioxide. Braz Arch Biol Technol 48(1):155–160CrossRefGoogle Scholar
  14. Ben Amor B (2008) Maîtrise de l’aptiture technologique de la matière végétale dans les opérations d’extraction de principes actifs; texturation par Détente Instantanée Contrôlée DIC. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  15. Ben Amor B, Allaf K (2009) Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from Malaysian Roselle (Hibiscus sabdariffa). Food Chem 115(3):820–825. doi: 10.1016/j.foodchem.2008.12.094 CrossRefGoogle Scholar
  16. Bousbia N, Abert Vian M, Ferhat MA, Petitcolas E, Meklati BY, Chemat F (2009) Comparison of two isolation methods for essential oil from rosemary leaves: hydrodistillation and microwave hydrodiffusion and gravity. Food Chem 114(1):355–362. doi: 10.1016/j.foodchem.2008.09.106 CrossRefGoogle Scholar
  17. Crank J (1975) The mathematics of diffusionGoogle Scholar
  18. Debs-Louka E (2000) Destruction des microorganismes par voie thermo-mécanique contrôlée dans des produits solides en morceaux ou en poudre. Application aux épices et aromates. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  19. Delgado-Rosas M (2002) Analyse et conception d’un réacteur à pulvérisation contrôlée sous vide (VCS). Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  20. Erkan N, Ayranci G, Ayranci E (2008) Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 110(1):76–82. doi: 10.1016/j.foodchem.2008.01.058 CrossRefGoogle Scholar
  21. FAO (2003) Medium-term prospects for agricultural commodities. Food and agriculture organization of the united nations, USGoogle Scholar
  22. FAO (2010) Citrus Fruit: Fresh and Processed - Annual Statistics. Food and agriculture organization of the united nations, USGoogle Scholar
  23. Fernández MB, Perez EE, Crapiste GH, Nolasco SM (2012) Kinetic study of canola oil and tocopherol extraction: parameter comparison of nonlinear models. J Food Eng 111(4):682–689. doi: 10.1016/j.jfoodeng.2012.01.036 CrossRefGoogle Scholar
  24. Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. Journal of Applied Chemistry 2(9):493–500. doi: 10.1002/jctb.5010020901. CrossRefGoogle Scholar
  25. Habba A (1997) Nouveaux procédés de précuisson et d’étuvage du riz par détente instantanée contrôlée (DIC): analyse des opérations, optimisation des procédés et approche à l’industrialisation. Université de Technologie de Compiègne, Compiègne, FranceGoogle Scholar
  26. Haddad J (2002) Impacts des procédés hydro-thermo-mécaniques dans la valorisation des graines oléoprotéagineuses. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  27. Iguedjtal T, Louka N, Allaf K (2008) Sorption isotherms of potato slices dried and texturized by controlled sudden decompression. J Food Eng 85(2):180–190. doi: 10.1016/j.jfoodeng.2007.06.028 CrossRefGoogle Scholar
  28. Juhel F (2000) Etude de l’application de deux nouvelles opérations de séchage/texturation du poisson; analyse comparative du procédé et du produit. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  29. Leybros J, Frémeaux P (1990) Extraction solide–liquide. Aspects théoriques. Techniques de l’Ingénieur J1 077 06Google Scholar
  30. Louka N, Allaf K (2004) Expansion ratio and color improvement of dried vegetables texturized by a new process “controlled sudden decompression to the vacuum”: application to potatoes, carrots and onions. J Food Eng 65(2):233–243. doi: 10.1016/j.jfoodeng.2004.01.020 CrossRefGoogle Scholar
  31. Manthey JA, Grohmann K (2001) Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J Agric Food Chem 49(7):3268–3273CrossRefGoogle Scholar
  32. Mounir S (2007) Studies of new manufacturing process of powders by inserting the instant controlled pressure drop DIC within spray-drying, swell-drying and controlled vacuum atomization of dairy products. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  33. Mounir S, Allaf K (2008) Three-stage spray drying: new process involving instant controlled pressure drop. Drying Technol 26(4):452–463. doi: 10.1080/07373930801929334 CrossRefGoogle Scholar
  34. Mounir S, Allaf K (2009) Study and modelling of dehydration and rehydration kinetics within porous medium. In: Proceedings of European Drying Conference AFSIA, Lyon, FranceGoogle Scholar
  35. Orford PD, Parker R, Ring SG (1990) Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydrate Research 196 (0):11–18. doi: 10.1016/0008-6215(90)84102-z CrossRefGoogle Scholar
  36. Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62(2):121–125. doi: 10.1016/s0031-9422(02)00513-7 CrossRefGoogle Scholar
  37. Pokorny J, Yanishlieva N, Gordon M (2001) Antioxidants in Foods: Practical Applications. Woodhead Publishing in Food Science and Technology. Woodhead Publishing Ltd, EnglandGoogle Scholar
  38. Rakotozafy H (2001) Application du nouveau procédé de déshydratation par détentes successives (DDS), dans le séchage de produits biologiques à haute valeur ajoutée. Université de La Rochelle, La Rochelle - FranceGoogle Scholar
  39. Rouseff RL, Martin SF, Youtsey CO (1987) Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. J Agric Food Chem 35(6):1027–1030CrossRefGoogle Scholar
  40. Sahyoun W (1996) Maîtrise de l’aptitude de matériaux agro-alimentaires aux procédés de séchage. Etude de l’adéquation entre les états structuraux, biochimiques, physiques et comportementaux sur les processus de déshydratation = Mastering the aptitude of food products to drying processes. Study of the adequacy between structural, biochemical, physical, and behavioural states on the dehydratation process. Université de Technologie de Compiègne, FranceGoogle Scholar
  41. Sanya E (2000) Analyse du traitement hydro-amido-thermique de bois gorgé d’eau; application à la restauration-préservation du bois archéologique. Université de La Rochelle, La Rochelle, FranceGoogle Scholar
  42. Schwarz K, Ternes W (1992a) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. I. Determination of phenolic diterpenes with antioxidative activity amongst tocochromanols using HPLC. Z Lebensm Unters Forsch 195(2):95–98CrossRefGoogle Scholar
  43. Schwarz K, Ternes W (1992b) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Z Lebensm Unters Forsch 195(2):99–103CrossRefGoogle Scholar
  44. Schwarz K, Ternes W, Schmauderer E (1992) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. III. Stability of phenolic diterpenes of rosemary extracts under thermal stress as required for technological processes. Z Lebensm Unters Forsch 195(2):104–107CrossRefGoogle Scholar
  45. Schwartzberg HG, Chao RY (1982) Solute diffusivities in leaching processes. Food Technolgy 2:73–86.Google Scholar
  46. Singh M, Guleria N (2013) Influence of harvesting stage and inorganic and organic fertilizers on yield and oil composition of rosemary (Rosmarinus officinalis L.) in a semi-arid tropical climate. Ind Crops Prod 42:37–40. doi: 10.1016/j.indcrop.2012.04.054 CrossRefGoogle Scholar
  47. Sui X, Liu T, Ma C, Yang L, Zu Y, Zhang L, Wang H (2012) Microwave irradiation to pretreat rosemary (Rosmarinus officinalis L.) for maintaining antioxidant content during storage and to extract essential oil simultaneously. Food Chem 131(4):1399–1405. doi: 10.1016/j.foodchem.2011.10.007 CrossRefGoogle Scholar
  48. Szumny A, Figiel A, Gutiérrez-Ortíz A, Carbonell-Barrachina ÁA (2010) Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J Food Eng 97(2):253–260. doi: 10.1016/j.jfoodeng.2009.10.019 CrossRefGoogle Scholar
  49. Thai-Cong D (2003) Etude de l’application du procédé hydrothermique dans le traitement de différents types de riz : procédé d’étuvage et micro- expansion par détente instantanée contrôlée et impact sur les propriétés fonctionnelles. Université de La Rochelle, La Rochelle - FranceGoogle Scholar
  50. USDA (2011) Citrus: world markets and trade. United States Department of Agriculture—Foreign Agricultural Service, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tamara Allaf
    • 1
  • Baya Berka Zougali
    • 2
  • Cuong Van Nguyen
    • 3
  • Mohamed Negm
    • 4
  • Karim Allaf
    • 5
  1. 1.ABCAR-DIC ProcessLa RochelleFrance
  2. 2.Laboratory of Research on Bio-active Products and Valorization of BiomasseEcole Normale SupérieureAlgerAlgeria
  3. 3.College of Engineering Technology, Can Tho UniversityCan ThoVietnam
  4. 4.Department of Special Food and Nutrition, ARCFood Technology Research InstituteGizaEgypt
  5. 5.Laboratory of Engineering Science for Environment (LaSIE FRE 3474) CNRSUniversity of La Rochelle, La RochelleLa Rochelle Cedex 01France

Personalised recommendations