Enhancement Techniques for CMOS Linear PAs

Chapter

Abstract

This chapter describes different techniques that are of interest for boosting the performance of fully integrated CMOS linear PAs. Not only have these techniques been proved to boost linear PA performance, but they can also be fully integrated into a single chip. From the simple use of the cascode transistor or the differential topology to more complex techniques such as the Doherty PA, predistortion, supply modulation or PA combination, these topologies allow the performance of a single PA to be improved in terms of efficiency, linearity or increased output power levels without jeopardizing the full integration of the final solution.

Keywords

Attenuation GaAs Crest 

References

  1. 1.
    Niknejad AM, Chowdhury D, Jiashu C (2012) Design of CMOS power amplifiers. IEEE Trans Microw Theory Techn 60(6):1784–1796CrossRefGoogle Scholar
  2. 2.
    Sowlati T, Leenaerts DMW (2003) A 2.4 GHz 0.18 μm CMOS self-biased cascode power amplifier. IEEE J Solid-State Circuits 38(8):1318–1324Google Scholar
  3. 3.
    Razavi B (2011) RF microelectronics, 2nd edn. Prentice Hall, New JerseyGoogle Scholar
  4. 4.
    Hamhee J, Kun-Seok L, Ockgoo L, Kyu Hwan A, Youngchang Y, Hyungwook K, Dong Ho L, Jongsoo L, Chang-Ho L, Laskar J (2010) A 40 % PAE linear CMOS power amplifier with feedback bias technique for WCDMA applications. In: IEEE radio frequency integrated circuits symposium (RFIC 2010), pp 561–564Google Scholar
  5. 5.
    Jian F, Shilei H, Yumei H, Zhiliang H (2010) A 2.4 GHz CMOS power amplifier. In: IEEE International Conference Solid-State and Integrated Circuit Technology (ICSICT 2010), pp 659–661Google Scholar
  6. 6.
    Yongwang D, Harjani R (2005) A high-efficiency CMOS +22 dBm linear power amplifier. IEEE J Solid-State Circuits 40(9):1895–1900CrossRefGoogle Scholar
  7. 7.
    Francois B, Reynaert P (2012) A fully integrated watt-level linear 900 MHz CMOS RF power amplifier for LTE-applications. IEEE Trans Microw Theory Techn 60(6):1878–1885CrossRefGoogle Scholar
  8. 8.
    Nuyts PAJ, Francois B, Dehaene W, Reynaert P (2012) A CMOS burst-mode transmitter with watt-level RF PA and flexible fully digital front-end. IEEE Trans Circuits Syst II: Exp Briefs 59(10):613–617CrossRefGoogle Scholar
  9. 9.
    Degani O, Cossoy F, Shahaf S, Cohen E, Kravtsov V, Sendik O, Chowdhury D, Hull CD, Ravid S (2010) A 90 nm CMOS power amplifier for 802.16e (WiMAX) applications. IEEE Trans Microw Theory Techn 58(5):1431–1437Google Scholar
  10. 10.
    Afsahi A, Behzad A, Magoon V, Larson LE (2010) Linearized dual-band power amplifiers with integrated baluns in 65 nm CMOS for a 2×2 802.11n MIMO WLAN SoC. IEEE J Solid-State Circuits 45(5):955–966Google Scholar
  11. 11.
    Chowdhury D, Hull CD, Degani OB, Yanjie W, Niknejad AM (2009) A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMax applications. IEEE J Solid-State Circuits 44(12):3393–3402Google Scholar
  12. 12.
    Apostolidou M, Van der Heijden MP, Leenaerts DMW, Sonsky J, Heringa A, Volokhine I (2009) A 65 nm CMOS 30 dBm Class-E RF power amplifier with 60 % PAE and 40 % PAE at 16 dB back-off. IEEE J Solid-State Circuits 44(5):1372–1379CrossRefGoogle Scholar
  13. 13.
    Elmala M, Paramesh J, Soumyanath K (2006) A 90 nm CMOS Doherty power amplifier with minimum AM-PM distortion. IEEE J Solid-State Circuits 41(6):1323–1332CrossRefGoogle Scholar
  14. 14.
    Li-Yuan Y, Hsin-Shu C, Yi-Jan C (2008) A 2.4 GHz fully integrated cascode-cascade CMOS Doherty power amplifier. IEEE Microw Wireless Compon Lett 18(3):197–199Google Scholar
  15. 15.
    Pornpromlikit S, Jeong J, Presti CD, Scuderi A, Asbeck PM (2010) A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS. IEEE Trans Microw Theory Techn 58(1):57–64CrossRefGoogle Scholar
  16. 16.
    Jeong J, Pornpromlikit S, Asbeck PM, Kelly D (2006) A 20 dBm linear RF power amplifier using stacked silicon-on-sapphire MOSFETs. IEEE Microw Wireless Compon Lett 16(12):684–686CrossRefGoogle Scholar
  17. 17.
    Leuschner S, Pinarello S, Hodel U, Mueller JE, Klar H (2010) A 31 dBm, high ruggedness power amplifier in 65 nm standard CMOS with high-efficiency stacked-cascode stages. In: IEEE radio frequency integrated circuits symposium (RFIC 2010), pp 395–398Google Scholar
  18. 18.
    Mingyuan L, Afsahi A, Behzad A (2010) A single-chip 2.4 GHz double cascode power amplifier with switched programmable feedback biasing under multiple supply voltages in 65 nm CMOS for WLAN application. In: IEEE radio frequency integrated circuits symp (RFIC 2010), pp 391–394Google Scholar
  19. 19.
    Ezzeddine AK, Huang HC (2003) The high voltage/high power FET (HiVP). In: IEEE radio frequency integrated circuits symppsium (RFIC 2003), pp 215–218Google Scholar
  20. 20.
    Reynaert P, Steyaert M (2006) RF power amplifiers for mobile communications. Springer, The NetherlandsGoogle Scholar
  21. 21.
    Aoki I, Kee S, Magoon R, Aparicio R, Bohn F, Zachan J, Hatcher G, McClymont D, Hajimiri A (2008) A fully-integrated quad-band GSM/GPRS CMOS power amplifier. IEEE J Solid-State Circuits 43(12):2747–2758CrossRefGoogle Scholar
  22. 22.
    Aoki I, Kee SD, Rutledge DB, Hajimiri A (2002) Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J Solid-State Circuits 37(3):371–383CrossRefGoogle Scholar
  23. 23.
    Kaymaksut E, Reynaert P (2012) Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE J Solid-State Circuits 47(7):1659–1671CrossRefGoogle Scholar
  24. 24.
    Jihwan K, Woonyun K, Hamhee J, Yan-Yu H, Youngchang Y, Hyungwook K, Chang-Ho L, Kornegay KT (2012) A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer. IEEE J Solid-State Circuits 47(3):599–614CrossRefGoogle Scholar
  25. 25.
    Onizuka K, Ishihara H, Hosoya M, Saigusa S, Watanabe O, Otaka S (2012) A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion. IEEE J Solid-State Circuits 47(8):1820–1827Google Scholar
  26. 26.
    Haldi P, Chowdhury D, Reynaert P, Gang L, Niknejad AM (2008) A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS. IEEE J Solid-State Circuits 43(5):1054–1063Google Scholar
  27. 27.
    Boshi J, Moon J, Chenxi Z, Kim B (2012) A 30.8 dBm wideband CMOS power amplifier with minimized supply fluctuation. IEEE Trans Microw Theory Techn 60(6):1658–1666Google Scholar
  28. 28.
    Gang L, Haldi P, Tsu-Jae King L, Niknejad AM (2008) Fully integrated CMOS power amplifier with efficiency enhancement at power back-off. IEEE J Solid-State Circuits 43(3):600–609CrossRefGoogle Scholar
  29. 29.
    Afsahi A, Larson LE (2010) An integrated 33.5 dBm linear 2.4 GHz power amplifier in 65 nm CMOS for WLAN applications. In: IEEE Custom Integrated Circuits Conference (CICC 2010), pp 1–4Google Scholar
  30. 30.
    Kyu Hwan A, Dong-Ho L, Ockgoo L, Hyungwook K, Jeonghu H, Woonyun K, Chang-Ho L, Haksun K, Laskar J (2009) A 2.4 GHz fully integrated linear cmos power amplifier with discrete power control. IEEE Microw Wireless Compon Lett 19(7):479–481Google Scholar
  31. 31.
    Chowdhury D, Reynaert P, Niknejad AM (2008) Transformer-coupled power amplifier stability and power back-off analysis. IEEE Trans Circuits Syst II: Exp Briefs 55(6):507–511CrossRefGoogle Scholar
  32. 32.
    Doherty WH (1936) A new high efficiency power amplifier for modulated waves. Proc Inst Radio Engineers 24(9):1163–1182Google Scholar
  33. 33.
    Cripps SC (1999) RF power amplifiers for wireless communications. Artech House, NorwoodGoogle Scholar
  34. 34.
    Agah A, Hanafi B, Dabag H, Asbeck P, Larson L, Buckwalter J (2012) A 45 GHz Doherty power amplifier with 23 % PAE and 18 dBm output power, in 45 nm SOI CMOS. In: IEEE MTT-S international microwave symposium digest (IMS 2012), pp 1–3Google Scholar
  35. 35.
    Wicks B, Skafidas E, Evans R (2008) A 60 GHz fully-integrated Doherty power amplifier based on 0.13 mm CMOS process. In: IEEE radio frequency integrated circuits symposium (RFIC 2008), pp 69–72Google Scholar
  36. 36.
    Chen YJE, Chih-Yun L, Tang-Nian L, Heo D (2006) A high-efficient CMOS RF power amplifier with automatic adaptive bias control. IEEE Microw Wireless Compon Lett 16(11):615–617CrossRefGoogle Scholar
  37. 37.
    Wongkomet N, Tee L, Gray PR (2006) A +31.5 dBm CMOS RF Doherty power amplifier for wireless communications. IEEE J Solid-State Circuits 41(12):2852–2859Google Scholar
  38. 38.
    Kang J, Daekyu Y, Kyoungjoon M, Kim B (2006) A ultra-high PAE doherty amplifier based on 0.13 μm CMOS process. IEEE Microw Wireless Compon Lett 16(9):505–507Google Scholar
  39. 39.
    Kaymaksut E, Reynaert P (2010) A 2.4 GHz fully integrated Doherty power amplifier using series combining transformer. In: Proceedings of european solid-state circuits conference (ESSCIRC 2010), pp 302–305Google Scholar
  40. 40.
    Gaber WM, Wambacq P, Craninckx J, Ingels M (2012) A CMOS IQ digital doherty transmitter using modulated tuning capacitors. In: Proceedings of european solid-state circuits conference (ESSCIRC 2012), pp 341–344Google Scholar
  41. 41.
    Yu Z, Iwamoto M, Larson LE, Asbeck PM (2003) Doherty amplifier with DSP control to improve performance in CDMA operation. In: IEEE MTT-S international microwave symposium digest (IMS 2003), pp 687–690Google Scholar
  42. 42.
    Chengzhou W, Vaidyanathan M, Larson LE (2004) A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers. IEEE J Solid-State Circuits 39(11):1927–1937CrossRefGoogle Scholar
  43. 43.
    Chengzhou W, Larson LE, Asbeck PM (2001) A nonlinear capacitance cancellation technique and its application to a CMOS class AB power amplifier. In: IEEE radio frequency integrated circuits symposium (RFIC 2001), pp 39–42Google Scholar
  44. 44.
    Chao L, Pham AVH, Shaw M, Saint C (2007) Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation. IEEE Trans Microw Theory Techn 55(11):2320–2328CrossRefGoogle Scholar
  45. 45.
    Xian C, Roblin P, Jongsoo L, Young-Gi K, Young Gi K (2007) A 3.5 GHz CMOS Doherty power amplifier with integrated diode linearizer targeted for WiMax applications. In: IEEE midwest symposium on circuits and systems (MWSCAS 2007), pp 465–468Google Scholar
  46. 46.
    Cheng-Chi Y, Huey-Ru C (2003) A 0.25-μm 20 dBm 2.4 GHz CMOS power amplifier with an integrated diode linearizer. IEEE Microw Wireless Compon Lett 13(2):45–47Google Scholar
  47. 47.
    Singh RD, Kyung-Wan Y (2006) A linear mode CMOS power amplifier with self-linearizing bias. In: IEEE Asian Solid-State Circuits Conference (ASSCC 2006), pp 251–254Google Scholar
  48. 48.
    Ding M, Gard KG, Steer MB (2012) A highly linear and efficient CMOS RF power amplifier with a 2-D circuit synthesis technique. IEEE Trans Microw Theory Techn 60(9):2851–2862CrossRefGoogle Scholar
  49. 49.
    Hamhee J, Kun-Seok L, Ockgoo L, Kyu Hwan A, Youngchang Y, Hyungwook K, Kobayashi KW, Chang-Ho L, Kenney JS (2013) A cascode feedback bias technique for linear CMOS power amplifiers in a multistage cascode topology. IEEE Trans Microw Theory Techn 61(2):890–901CrossRefGoogle Scholar
  50. 50.
    Palaskas Y, Taylor SS, Pellerano S, Rippke I, Bishop R, Ravi A, Lakdawala H, Soumyanath K (2006) A 5 GHz 20 dBm power amplifier with digitally assisted AM-PM correction in a 90 nm CMOS process. IEEE J Solid-State Circuits 41(8):1757–1763CrossRefGoogle Scholar
  51. 51.
    Ki Yong S, Bonhoon K, Songcheol H (2012) A CMOS power amplifier with a built-in RF predistorter for handset applications. IEEE Trans Microw Theory Techn 60(8):2571–2580CrossRefGoogle Scholar
  52. 52.
    Kwon DH, Hao L, Yuchun C, Tseng R, Yun C (2010) Digitally equalized cmos transmitter front-end with integrated power amplifier. IEEE J Solid-State Circuits 45(8):1602–1614CrossRefGoogle Scholar
  53. 53.
    Presti CD, Carrara F, Scuderi A, Asbeck PM, Palmisano G (2009) A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control. IEEE J Solid-State Circuits 44(7):1883–1896CrossRefGoogle Scholar
  54. 54.
    Kahn LR (1952) Single-sideband transmission by envelope elimination and restoration. Proc IRE 40(7):803–806CrossRefGoogle Scholar
  55. 55.
    Pedro JC, Garcia JA, Cabral PM (2007) Nonlinear Distortion Analysis of Polar Transmitters. In: IEEE MTT-S International Microwave Symposium Digest (IMS 2007), pp 957–960Google Scholar
  56. 56.
    Jinsung C, Dongsu K, Kang D, Kim B (2009) A polar transmitter with CMOS programmable hysteretic-controlled hybrid switching supply modulator for multistandard applications. IEEE Trans Microw Theory Techn 57(7):1675–1686CrossRefGoogle Scholar
  57. 57.
    Feipeng W, Kimball DF, Popp JD, Yang AH, Lie DY, Asbeck PM, Larson LE (2006) An improved power-added efficiency 19 dbm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications. IEEE Trans Microw Theory Techn 54(12):4086–4099Google Scholar
  58. 58.
    Jinsung C, Kang D, Dongsu K, Kim B (2009) Optimized envelope tracking operation of doherty power amplifier for high efficiency over an extended dynamic range. IEEE Trans Microw Theory Techn 57(6):1508–1515CrossRefGoogle Scholar
  59. 59.
    Dal Fabbro PA, Kayal M (2010) Linear CMOS RF power amplifiers for wireless applications. Springer, New YorkCrossRefGoogle Scholar
  60. 60.
    Takahashi K, Yamanouchi S, Hirayama T, Kunihiro K (2008) An envelope tracking power amplifier using an adaptive biased envelope amplifier for WCDMA handsets. In: IEEE radio frequency integrated circuits symposium (RFIC 2008), pp 405–408Google Scholar
  61. 61.
    Myoungbo K, Jinseong J, Hassan M, Yan JJ, Kimball DF, Asbeck PM, Larson LE (2012) High efficiency wideband envelope tracking power amplifier with direct current sensing for LTE applications. In: IEEE topical conference on power amplifiers for wireless and radio applications (PAWR 2012), pp 41–44Google Scholar
  62. 62.
    Po-Hsing W, Yan L, Weibo H, Lopez J, Lie DYC, Liang TJ (2011) CMOS envelope tracking amplifier IC design for high-efficiency RF polar transmitters. In: IEEE international symposium on circuits and systems (ISCAS 2011), pp 197–200Google Scholar
  63. 63.
    Yan L, Lopez J, Schecht C, Ruili W, Lie DYC (2012) Design of high efficiency monolithic power amplifier with envelope-tracking and transistor resizing for broadband wireless applications. IEEE J Solid-State Circuits 47(9):2007–2018CrossRefGoogle Scholar
  64. 64.
    Kang D, Byungjoon P, Chenxi Z, Kim D, Kim J, Cho Y, Sangsu J, Hadong J, Kim B (2012) A 34 % PAE, 26 dBm output power envelope-tracking CMOS power amplifier for 10 MHz BW LTE applications. In: IEEE MTT-S international microwave symposium digest (IMS 2012), pp 1–3Google Scholar
  65. 65.
    Hassan M, Olson C, Kovac D, Yan JJ, Nobbe D, Kelly D, Asbeck PM, Larson LE (2012) An envelope-tracking CMOS-SOS power amplifier with 50 % overall pae and 29.3 dbm output power for lte applications. In: IEEE compound semiconductor integrated circuit symposium (CSICS 2012), pp 1–4Google Scholar
  66. 66.
    Dal Fabbro PA, Meinen C, Kayal M, Kobayashi K, Watanabe Y (2006) A dynamic supply CMOS RF power amplifier for 2.4 GHz and 5.2 GHz frequency bands. In: IEEE radio frequency integrated circuits symposium (RFIC 2006), pp 169–172Google Scholar
  67. 67.
    Po-Chih W, Kai-Yi H, Yu-Fu K, Ming-Chong H, Chao-Hua L, Tzung-Ming C, Chia-Jun C, Ka-Un C, Ta-Hsun Y, Wen-Shan W, Ying-Hsi L, Lee C–C (2008) A 2.4 GHz +25 dBm P-1 dB linear power amplifier with dynamic bias control in a 65 nm CMOS process. In: Proceedings of european solid-state circuits conference (ESSCIRC 2008), pp 490–493Google Scholar
  68. 68.
    Xu Z, Gu QJ, Chang MCF (2011) A 100–117 GHz W-band CMOS power amplifier with on-chip adaptive biasing. IEEE Microw Wireless Compon Lett 21(10):547–549CrossRefGoogle Scholar
  69. 69.
    Po-Chih W, Chia-Jun C, Wei-Ming C, Pei-Ju C, Chun-Cheng W, Chao-Hua L, Kai-Te C, Ming-Chong H, Yi-Ming C, Shih-Min L, Ka-Un C, Ying-His L, Lee C–C (2007) A 2.4 GHz fully integrated transmitter front end with +26.5 dBm on-chip CMOS power amplifier. In: IEEE radio frequency integrated circuits symposium (RFIC 2007), pp 263–266Google Scholar
  70. 70.
    Hyunji K, Bonhoon K, Songcheol H (2012) Highly efficient 24 GHz CMOS linear power amplifier with an adaptive bias circuit. In: IEEE asia-pacific microwave conference proceedings (APMC 2012), pp 7–9Google Scholar
  71. 71.
    Nai-Chung K, Jui-Chi K, Che-Chung K, Huei W (2011) K-band CMOS power amplifier with adaptive bias for enhancement in back-off efficiency. In: IEEE MTT-S international microwave symposium digest (IMS 2011), pp 1–4Google Scholar
  72. 72.
    Liu JYC, Tang A, Ning-Yi W, Gu QJ, Berenguer R, Hsieh-Hung H, Po-Yi W, Chewnpu J, Chang MCF (2011) A V-band self-healing power amplifier with adaptive feedback bias control in 65 nm CMOS. In: IEEE radio frequency integrated circuits symposium (RFIC 2011), pp 1–4Google Scholar
  73. 73.
    Chih-Yun L, Yi-Jan C, Heo D (2005) Impact of bias schemes on Doherty power amplifiers. In: IEEE international symposium on circuits and systems (ISCAS 2005), pp 212–215Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Estudios e Investigaciones Técnicas, Electronics and Communication DepartmentUniversity of NavarraSan SebastianSpain

Personalised recommendations