Advertisement

Acoustic Carrier Transport in GaAs Nanowires

  • Snežana Lazić
  • Rudolf Hey
  • Paulo V. Santos
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 128)

Abstract

Present semiconductor technologies allow the growth of different types of nanostructures, such as quantum wells, wires, and dots on the surface of a single semiconductor crystal. The piezoelectric field of surface acoustic waves (SAWs) propagating on the crystal surface provides an efficient mechanism for the controlled exchange of electrons and holes between these nanostructures. In this review, we explore this ability of dynamic SAW fields to demonstrate acoustically driven single-photon sources using coupled quantum wells and dots based on (Al,Ga)As (311)A material system. We address the growth of the coupled nanostructures by molecular beam epitaxy, the dynamics of the acoustic carrier transfer between them, as well as the acoustic control of recombination in quantum dots. The latter provides the basis for the operation of the acoustically driven single-photon sources, which are characterized by a low jitter and repetition frequency close to 1 GHz.

Keywords

Single Photon Surface Acoustic Wave Acoustic Power Emission Center Molecular Beam Epitaxy Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been the results of many fruitful collaborations. Our special thanks are addressed to R Hey for the supply of state-of-the-art molecular-beam epitaxy samples, as well as to F. Alsina, F. Iikawa, J. A. H. Stotz, R. Nötzel, and U. Jahn for the collaboration in the field of carrier transport in QWRs. We also thank A. Tahraoui for discussions and comments on the manuscript. Finally, we also acknowledge the technical support from A.-K. Bluhm, M. Höricke, S. Krauß, W. Seidel, H.-P. Schönherr, and E. Wiebicke in the fabrication of the samples. This work was supported by the NanoQUIT consortium, Bundesministerium für Bildung und Forschung (BMBF), Germany.

References

  1. 1.
    Alsina F, Santos PV, Hey R (2002) Spatial-dispersion-induced acoustic anisotropy in semiconductor structures. Phys Rev B 65:193301ADSCrossRefGoogle Scholar
  2. 2.
    Alsina F, Santos PV, Hey R, García-Cristóbal A, Cantarero A (2001) Dynamic carrier distribution in quantum wells modulated by surface acoustic waves. Phys Rev B 64:0410304(R)Google Scholar
  3. 3.
    Alsina F, Santos PV, Schönherr HP, Nötzel R, Ploog KH (2003) Real-time dynamics of the acoustically-induced carrier transport in GaAs quantum wires. Phys Rev B 67:161305(R)Google Scholar
  4. 4.
    Alsina F, Santos PV, Schönherr HP, Seidel W, Nötzel R, Ploog KH (2002)Surface-acoustic-wave-induced carrier transport in quantum wires. Phys Rev B 65:165330ADSCrossRefGoogle Scholar
  5. 5.
    Alsina F, Stotz JAH, Hey R, Jahn U, Santos PV (2008) Acoustic charge and spin transport in GaAs quantum wires. Phys Stat Sol (c) 9:2907CrossRefGoogle Scholar
  6. 6.
    Alsina F, Stotz JAH, Hey R, Santos PV (2004) Acoustically induced potential dots on GaAs quantum wells. Solid State Commun 129:453ADSCrossRefGoogle Scholar
  7. 7.
    Alsina F, Stotz JAH, Hey R, Santos PV (2006) Radiative recombination during acoustically induced transport in GaAs quantum wells. J Vac Sci Technol B 24:2029CrossRefGoogle Scholar
  8. 8.
    Auld BA (1990) Acoustic fields and waves in solids. Robert E. Krieger Publishing Company, Malabar, FloridaGoogle Scholar
  9. 9.
    Batista PD, Hey R, Santos PV (2008) Efficient electrical detection of ambipolar acoustic transport in GaAs. Appl Phys Lett 93:262108ADSCrossRefGoogle Scholar
  10. 10.
    Bennett AJ, Unitt DC, See P, Shields AJ, Atkinson P, Cooper K, Ritchie DA (2005) Electrical control of the uncertainty in the time of single photon emission events. Phys Rev B 72(3):033316ADSCrossRefGoogle Scholar
  11. 11.
    Benson O, Santori C, Pelton M, Yamamoto Y (2000) Regulated and entangled photons from a single quantum dot. Phys Rev Lett 84:2513ADSCrossRefGoogle Scholar
  12. 12.
    Biasiol G, Reinhardt F, Gustafsson A, Kapon E (1997) Self-limiting OMCVD growth of GaAs on V-grooved substrates with application to InGaAs/GaAs quantum wires. J Electron Mater 26:1194ADSCrossRefGoogle Scholar
  13. 13.
    Bouwmeester D, Ekert AK, Zeilinger A (eds) (2000) The physics of quantum information. Springer, BerlinMATHGoogle Scholar
  14. 14.
    Bödefeld C, Ebbecke J, Toivonen J, Sopanen M, Lipsanen H, Wixforth A (2006) Experimental investigation towards a periodically pumped single-photon source. Phys Rev B 74:035407ADSCrossRefGoogle Scholar
  15. 15.
    Brassard G, Lütkenhaus N, Mor T, Sanders BC (2000) Limitations on practical quantum cryptography. Phys Rev Lett 85:1330ADSCrossRefGoogle Scholar
  16. 16.
    Couto Jr. ODD, Iikawa F, Rudolph J, Hey R, Santos PV (2007) Anisotropic spin transport in (110) GaAs quantum wells. Phys Rev Lett 98:036603ADSCrossRefGoogle Scholar
  17. 17.
    Couto Jr ODD, Lazić S, Iikawa F, Stotz J, Hey R, Santos PV (2009) Photon anti-bunching in acoustically pumped quantum dots. Nat Phot 3:645CrossRefGoogle Scholar
  18. 18.
    Craig NJ, Taylor JM, Lester EA, Marcus CM, Hanson MP, Gossard AC (2004) Tunable nonlocal spin control in a coupled-quantum dot system. Science 304:565ADSCrossRefGoogle Scholar
  19. 19.
    de Lima Jr. MM, Hey R, Stotz JAH, Santos PV (2004) Acoustic manipulation of electron–hole pairs in GaAs at room temperature. Appl Phys Lett 84:2569ADSCrossRefGoogle Scholar
  20. 20.
    de Lima Jr. MM, Santos PV (2005) Modulation of photonic structures by surface acoustic waves. Rep Prog Phys 68:1639ADSCrossRefGoogle Scholar
  21. 21.
    Eberl K, Petroff PM, Demeester P (eds) (1995) Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates, NATO advanced science institute series E, vol 298. Kluwer Academic, DordrechtGoogle Scholar
  22. 22.
    Foden CL, Talyanskii VI, Milburn GJ, Leadbeater ML, Pepper M (2000) High-frequency acousto-electric single-photon source. Phys Rev A 62:011803(R)Google Scholar
  23. 23.
    Fricke J, Notzel R, Jahn U, Niu Z, Schönherr HP, Ramsteiner M, Ploog KH (1999) Patterned growth on GaAs (311)A substrates: Engineering of growth selectivity for lateral semiconductor nanostructures. J Appl Phys 86:2896ADSCrossRefGoogle Scholar
  24. 24.
    Geddes CD, Lakowicz JR (eds) (2005) Reviews in fluorescence 2005. Springer Science + Business Media, New YorkGoogle Scholar
  25. 25.
    Gell JR, Atkinson P, Bremner SP, Sfigakis F, Kataoka M, Anderson D, Jones GAC, Barnes CHW, Ritchie DA, Ward MB, Norman CE, Shields AJ (2006) Surface-acoustic-wave-driven luminescence from a lateral p-n junction. Appl Phys Lett 89:243505ADSCrossRefGoogle Scholar
  26. 26.
    Gell JR, Ward MB, Shields AJ, Atkinson P, Bremner SP, Anderson D, Kataoka M, Barnes CHW, Jones GAC, Ritchie DA (2007) Temporal characteristics of surface-acoustic-wave-driven luminescence from a lateral p-n junction. Appl Phys Lett 91:013506ADSCrossRefGoogle Scholar
  27. 27.
    Gell JR, Ward MB, Young RJ, Stevenson RM, Atkinson P, Anderson D, Jones GAC, Ritchie DA, Shields AJ (2008) Modulation of single quantum dot energy levels by a surface-acoustic-waves. Appl Phys Lett 93:081115ADSCrossRefGoogle Scholar
  28. 28.
    Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145ADSCrossRefGoogle Scholar
  29. 29.
    Hey R, Friedland KJ, Kostial H, Ploog KH (2004) Conductance anisotropy of high-mobility two-dimensional hole gas at GaAs/(Al,Ga)As (113)A single heterojunctions. Phys E 21:737CrossRefGoogle Scholar
  30. 30.
    Hosey T, Talyanskii V, Vijendran S, Jones GAC, Ward MB, Unitt DC, Norman CE, Shields AJ (2004) Lateral n-p junction for acoustoelectric nanocircuits. Appl Phys Lett 85:491ADSCrossRefGoogle Scholar
  31. 31.
    Hoskins MJ, Morkoç H, Hunsinger BJ (1982) Charge transport by surface acoustic waves in GaAs. Appl Phys Lett 41:332ADSCrossRefGoogle Scholar
  32. 32.
    Imamoglu A (1992) Nonclassical light generation by coulomb blockade of resonant tunneling. Phys Rev B 46:15982ADSCrossRefGoogle Scholar
  33. 33.
    Intonti F, Emiliani V, Lienau C, Elsaesser T, Nötzel R, Ploog KH (2001) Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire. Phys Rev B 63:75313ADSCrossRefGoogle Scholar
  34. 34.
    Jiao SJ, Batista PD, Biermann K, Hey R, Santos PV (2009) Electrical detection of ambipolar acoustic carrier transport by surface acoustic waves. J Appl Phys 106:053708ADSCrossRefGoogle Scholar
  35. 35.
    Kim J, Benson O, Kan H, Yamamoto Y (1999) A single-photon turnstile device. Nature 397:500ADSCrossRefGoogle Scholar
  36. 36.
    Kiselev AA, Kim KW (2000) Progressive suppression of spin relaxation in two-dimensional channels of finite width. Phys Rev B 61:13115ADSCrossRefGoogle Scholar
  37. 37.
    Korpel A (1997) Acousto-optics. Marcel Dekker, New YorkGoogle Scholar
  38. 38.
    Lienau C, Richter A, Behme G, Süplitz M, Heinrich D, Elsaesser T, Ramsteiner M, Nötzel R, Ploog KH (1998) Nanoscale mapping of confinement potentials in single semiconductor quantum wires by near-field optical spectroscopy. Phys Rev B 58:2045ADSCrossRefGoogle Scholar
  39. 39.
    Lounis B, Orrit M (2005) Single-photon sources. Rep Prog Phys 68:1129ADSCrossRefGoogle Scholar
  40. 40.
    Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, Imamog̃lu A (2000) A quantum dot single-photon turnstile device. Science 290:2282Google Scholar
  41. 41.
    Miskinis R, Rutkowski O, Urba E (1996) Surface acoustic waves on the (11n) cuts of gallium arsenide. J Appl Phys 80:4867ADSCrossRefGoogle Scholar
  42. 42.
    Nötzel R, Menniger J, Ramsteiner M, Ruiz A, Schönherr HP, Ploog KH (1996) Selectivity of growth on patterned GaAs (311)A substrates. Appl Phys Lett 68:1132ADSCrossRefGoogle Scholar
  43. 43.
    Nötzel R, Niu ZC, Ramsteiner M, Schönherr HP, Trampert A, Däweritz L, Ploog KH (1998) Uniform quantum-dot arrays formed by natural self-faceting on patterned substrates. Nature (London) 392:56ADSCrossRefGoogle Scholar
  44. 44.
    Nötzel R, Ploog KH (2000) Patterned growth on high-index GaAs (311)A substrates. Appl Surf Sci 166:406ADSCrossRefGoogle Scholar
  45. 45.
    Nötzel R, Ramsteiner M, Menniger J, Trampert A, Schönherr HP, Däweritz L, Ploog KH (1996) Micro-photoluminescence study at room temperature of sidewall quantum wires formed on patterned GaAs (311)A substrates by molecular beam epitaxy. J Appl Phys 35:L297CrossRefGoogle Scholar
  46. 46.
    Nötzel R, Ramsteiner M, Niu Z, Schönherr HP, Däweritz L, Ploog KH (1997) Enhancement of optical nonlinearity in strained (InGa)As sidewall quantum wires on patterned GaAs (311)A substrates. Appl Phys Lett 70:1578ADSCrossRefGoogle Scholar
  47. 47.
    Pochung Chen CP, Sham LJ (2001) Control of exciton dynamics in nanodots for quantum operations. Phys Rev Lett 87:067401ADSCrossRefGoogle Scholar
  48. 48.
    Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc s1-17(1):4Google Scholar
  49. 49.
    Richter A, Behme G, Süptitz M, Lienau C, Elsaesser T, Nötzel R, Ploog KH (1997) Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy. Phys Rev Lett 79:2145ADSCrossRefGoogle Scholar
  50. 50.
    Richter A, Süptitz M, Heinrich D, Lienau C, Elsaesser T, Nötzel R, Ploog KH (1998) Exciton transport into a single GaAs quantum wire studied by picosecond near-field optical spectroscopy. Appl Phys Lett 73:2176ADSCrossRefGoogle Scholar
  51. 51.
    Rocke C, Zimmermann S, Wixforth A, Kotthaus JP, Böhm G, Weimann G (1997) Acoustically driven storage of light in a quantum well. Phys Rev Lett 78:4099ADSCrossRefGoogle Scholar
  52. 52.
    Royer D, Dieulesaint E (2000) Elastic waves in solids. Springer, HeidelbergCrossRefGoogle Scholar
  53. 53.
    Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y (2001) Triggered single photons from a quantum dot. Phys Rev Lett 86:1502ADSCrossRefGoogle Scholar
  54. 54.
    Santos PV, Nötzel R, Ploog KH (1999) Polarization anisotropy in quasi-planar sidewall quantum wires on patterned GaAs (311)A substrates. J Appl Phys 85:8228ADSCrossRefGoogle Scholar
  55. 55.
    Santos PV, Stotz JAH, Hey R (2005) Control of photogenerated carriers and spins using surface acoustic waves. In: Takayanagi H, Nitta J (eds) Realizing controllable quantum states: Proc. of the Int. Symp. on Mesoscopic Superconductivity and Spintronics - In the light of quantum computation, p 357. World Scientific, SingaporeGoogle Scholar
  56. 56.
    Shilton JM, Talyanskii VI, Pepper M, Ritchie DA, Frost JEF, Ford CJB, Smith CG, Jones GAC (1996) High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J Phys Condens Matter 8:L531ADSCrossRefGoogle Scholar
  57. 57.
    Sogawa T, Gotoh H, Hiyarama Y, Santos P, Ploog K (2007) Dimensional oscillation in GaAs/AlAs quantum wells by 2-dimensional standing surface acoustic waves. Appl Phys Lett 91:141917ADSCrossRefGoogle Scholar
  58. 58.
    Sogawa T, Santos PV, Zhang SK, Eshlaghi S, Wieck AD, Ploog KH (2001) Dynamic band structure modulation of quantum wells by surface acoustic waves. Phys Rev B 63:121307(R)Google Scholar
  59. 59.
    Sogawa T, Santos PV, Zhang SK, Eshlaghi S, Wieck AD, Ploog KH (2001) Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. Phys Rev Lett 87:276601ADSCrossRefGoogle Scholar
  60. 60.
    Stotz JAH, Hey R, Santos PV, Ploog KH (2005) Coherent spin transport via dynamic quantum dots. Nat Mater 4:585ADSCrossRefGoogle Scholar
  61. 61.
    Talyanskii VI, Milburn GJ, Stotz JAH, Santos PV (2007) Acoustoelectric single-photon detector. Semicond Sci Technol 22:209ADSCrossRefGoogle Scholar
  62. 62.
    Tanski WJ, Merritt SW, Sacks RN, Cullen DE, Branciforte EJ, Carroll RD, Eschrich TC (1987) Heterojunction acoustic charge transport devices on GaAs. Appl Phys Lett 52:18ADSCrossRefGoogle Scholar
  63. 63.
    Tsai CS (1990) Guided-wave acousto-optics. Springer, BerlinCrossRefGoogle Scholar
  64. 64.
    Wang XL, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301ADSCrossRefGoogle Scholar
  65. 65.
    White RM (1970) Surface elastic waves. In: Proc. of the IEEE, vol 58. IEEE, New York, p 1238Google Scholar
  66. 66.
    White RM, Vollmer FW (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7(12):314ADSCrossRefGoogle Scholar
  67. 67.
    Wiele C, Haake F, Rocke C, Wixforth A (1998) Photon trains and lasing: The periodically pumped quantum dot. Phys Rev A 58:R2680ADSCrossRefGoogle Scholar
  68. 68.
    Wixforth A, Scriba J, Wassermeier M, Kotthaus J, Weimann G, Schlapp W (1989) Surface acoustic waves on GaAs/AlxGa1−xAs heterostructures. Phys Rev B 40:7874ADSCrossRefGoogle Scholar
  69. 69.
    Yamamoto Y, Santori C, Solomon G, Vuckovic J, Fattal D, Waks E, Diamanti E (2005) Single photons for quantum information systems. Progr Informat 1:5CrossRefGoogle Scholar
  70. 70.
    Zhang V, Lefebvre HE, Gryba T (1997) Theoretical study of surface acoustic waves in (n11) GaAs-cuts. IEEE Trans Sonics Ultrason SU-44:406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Paul-Drude-Institut für FestkörperelektronikBerlinGermany

Personalised recommendations