Semiconductor Superlattice Sasers at Terahertz Frequencies: Design, Fabrication and Measurement

  • A. J. KentEmail author
  • R. Beardsley
Part of the Topics in Applied Physics book series (TAP, volume 128)


This chapter describes the design, fabrication and measurement of sub-THz sound amplification by the stimulated emission of radiation (saser) devices based on semiconductor superlattices (SLs). The chapter begins with a review of the various methods of amplifying sound in the GHz–THz frequency range which have been explored during the past 50 years since the invention of the laser. This is followed by a detailed consideration of electrically pumped sasers using SLs as the acoustic gain medium and as acoustic mirrors. A theoretical model of the phonon amplification by stimulated emission in a weakly coupled SL is presented, and the experimental evidence for amplification is reviewed. Next, the principles of SL acoustic Bragg reflectors and the methods that can be used for their design are explained. Various prototype vertical cavity saser structures are described and experimental evidence for saser action reviewed. The chapter ends with a brief discussion of possible applications for sub-THz saser sound.


Quantum Well Population Inversion Transfer Matrix Method Phonon Emission Coherent Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tucker EB (1961) Amplification of 9.3-kMc/sec ultrasonic pulses by maser action in ruby. Phys Rev Lett 6:547–548ADSCrossRefGoogle Scholar
  2. 2.
    Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494ADSCrossRefGoogle Scholar
  3. 3.
    Tucker EB (1961) Attenuation of longitudinal ultrasonic vibrations by spin-phonon coupling in ruby. Phys Rev Lett 6:183–185ADSCrossRefGoogle Scholar
  4. 4.
    Hu P (1980) Stimulated emission of 29-cm−1 phonons in ruby. Phys Rev Lett 44:417–420ADSCrossRefGoogle Scholar
  5. 5.
    Overwijk MHF, Dijkhuis JI, de Wijn HW (1990) Superfluorescence and amplified spontaneous emission of 29-cm−1 phonons in ruby. Phys Rev Lett 65:2015–2018ADSCrossRefGoogle Scholar
  6. 6.
    Tilstra LG, Arts AFM, de Wijn HW (2003) Coherence of phonon avalanches in ruby. Phys Rev B 68:144302ADSCrossRefGoogle Scholar
  7. 7.
    Bron WE, Grill W (1978) Stimulated phonon emission. Phys Rev Lett 40:1459–1463ADSCrossRefGoogle Scholar
  8. 8.
    Pieur J-Y, Devaud M, Joffrin J, Barre C, Stenger M, Chapellier M (1996) Sound amplification by stimulated emission of phonons using two-level systems in glasses. Phys B Condens Matter 219–220:235–238CrossRefGoogle Scholar
  9. 9.
    Phillips WA (1987) Two-level states in glasses. Rep Prog Phys 50:1657ADSCrossRefGoogle Scholar
  10. 10.
    Huston AR, McFee JH, White DL (1961) Ultrasonic amplification in CdS. Phys Rev Lett 6:547–548CrossRefGoogle Scholar
  11. 11.
    Srivastava GP (1990) The physics of phonons. A. Hilger, BristolGoogle Scholar
  12. 12.
    Trigo M, Bruchhausen A, Fainstein A, Jusserand B, Thierry-Mieg V (2002) Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys Rev Lett 89:227402ADSCrossRefGoogle Scholar
  13. 13.
    Huynh A, Lanzillotti-Kimura ND, Jusserand B, Perrin B, Fainstein A, Pascual-Winter MF, Peronne E, Lemaitre A (2006) Subterahertz phonon dynamics in acoustic nanocavities. Phys Rev Lett 97:115502ADSCrossRefGoogle Scholar
  14. 14.
    Komirenko SM, Kim KW, Demidenko AA, Kochelap VA, Stroscio MA (2000) Generation and amplification of sub-THz coherent acoustic phonons under the drift of two-dimensional electrons. Phys Rev B 62:7459ADSCrossRefGoogle Scholar
  15. 15.
    Makler SS, Vasilevskiy MI, Anda EV, Tuyarot DE, Weberszpil J, Pastawski HM (1998) A source of terahertz coherent phonons. J Phys Condens Matter 10:5905ADSCrossRefGoogle Scholar
  16. 16.
    Glavin BA, Kochelap VA, Linnik TL, Kim KW, Stroscio MA (2002) Generation of high-frequency coherent acoustic phonons in superlattices under hopping transport. I. Linear theory of phonon instability. Phys Rev B 65:085303ADSCrossRefGoogle Scholar
  17. 17.
    Glavin BA, Kochelap VA, Linnik TL, Kim KW, Stroscio M (2002) A generation of high-frequency coherent acoustic phonons in superlattices under hopping transport. II. Steady-state phonon population and electric current in generation regime. Phys Rev B 65:085304ADSCrossRefGoogle Scholar
  18. 18.
    Glavin BA, Kochelap VA, Linnik TL (1999) Generation of high-frequency coherent acoustic phonons in a weakly coupled superlattice. Appl Phys Lett 74:3525–3527ADSCrossRefGoogle Scholar
  19. 19.
    Kent AJ, Kini RN, Stanton NM, Henini M, Glavin BA, Kochelap VA, Linnik TL (2006) Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance. Phys Rev Lett 96:215504ADSCrossRefGoogle Scholar
  20. 20.
    Beardsley RP, Akimov AV, Henini M, Kent AJ (2010) Coherent terahertz sound amplifcation and spectral line narrowing in a Stark ladder superlattice. Phys Rev Lett 104:85501ADSCrossRefGoogle Scholar
  21. 21.
    Walker PM, Kent AJ, Henini M, Glavin BA, Kochelap VA, Linnik TL (2009) Terahertz acoustic oscillations by stimulated phonon emission in an optically pumped superlattice. Phys Rev B 79:245313ADSCrossRefGoogle Scholar
  22. 22.
    Grahn HT (1994) Semiconductor superlattices: growth and electronic properties. World Scientific, SingaporeGoogle Scholar
  23. 23.
    Kent AJ, Wigmore JK (2003) Energy relaxation by hot two-dimensional carriers in zero magnetic field. In: Challis L (ed) Electron–phonon interactions in low-dimensional structures. Oxford University Press, Oxford, pp 5–59CrossRefGoogle Scholar
  24. 24.
    Tsu R, Döhler G (1975) Hopping conduction in a “superlattice”. Phys Rev B 12:680–686ADSCrossRefGoogle Scholar
  25. 25.
    Cavill SA, Challis LJ, Kent AJ, Ouali FF, Akimov AV, Henini M (2002) Acoustic phonon-assisted tunnelling in GaAs/AlAs superlattices. Phys Rev B 66:235320ADSCrossRefGoogle Scholar
  26. 26.
    Kini RN, Kent AJ, Stanton NM, Henini M (2005) Angle dependence of phonon-assisted tunnelling in a weekly coupled superlattice: evidence for terahertz phonon amplification. J Appl Phys 98:033514ADSCrossRefGoogle Scholar
  27. 27.
    Beardsley RP, Campion RP, Glavin BA, Kent AJ (2011) A GaAs/AlAs superlattice as an electrically pumped THz acoustic phonon amplifier. New J Phys 13:073007CrossRefGoogle Scholar
  28. 28.
    Hawker P, Kent AJ, Challis LJ, Bartels A, Dekorsy T, Kurz H, Kohler K (2000) Observation of coherent zone-folded acoustic phonons generated by Raman scattering in a superlattice. Appl Phys Lett 77:3209ADSCrossRefGoogle Scholar
  29. 29.
    Kent AJ, Stanton NM, Challis LJ, Henini M (2002) Generation and propagation of monochromatic acoustic phonons in gallium arsenide. Appl Phys Lett 81:3497ADSCrossRefGoogle Scholar
  30. 30.
    Rytov SM (1956) Acoustical properties of a thinly laminated medium. Sov Phys Acoust 2:68–80Google Scholar
  31. 31.
    Tamura S, Hurley DC, Wolfe JP (1988) Acoustic-phonon propagation in superlattices. Phys Rev B 38:1427–1449ADSCrossRefGoogle Scholar
  32. 32.
    Colvard C, Merlin R, Klein MV, Gossard AC (1980) Observation of folded acoustic phonons in a semiconductor superlattice. Phys Rev Lett 45:298ADSCrossRefGoogle Scholar
  33. 33.
    Popovic ZV, Spitzer J, Ruf T, Cardona M, Nötzel R, Ploog K (1993) Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the [3 1 1] direction. Phys Rev B 48:1659ADSCrossRefGoogle Scholar
  34. 34.
    Narayanamurti V, Störmer HL, Chin MA, Gossard AC, Wiegmann W (1979) Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter. Phys Rev Lett 43:2012–2016ADSCrossRefGoogle Scholar
  35. 35.
    Stanton NM, Kini RN, Kent AJ, Henini M (2003) Terahertz phonon optics in GaAs/AlAs superlattice structures. Phys Rev B 68:113302ADSCrossRefGoogle Scholar
  36. 36.
    Lanzillotti-Kimura ND, Fainstein A, Lemaître A, Jusserand B (2006) Nanowave devices for terahertz acoustic phonons. Appl Phys Lett 88:083113ADSCrossRefGoogle Scholar
  37. 37.
    Lanzillotti-Kimura ND, Perrin B, Fainstein A, Jusserand B, Lemaître A (2010) Nanophononic thin-film filters and mirrors studied by picosecond ultrasonics. Appl Phys Lett 96:053101ADSCrossRefGoogle Scholar
  38. 38.
    Rozas G, Pascual Winter MF, Jusserand B, Fainstein A, Perrin B, Semenova E, Lemaître A (2009) Lifetime of THz acoustic nanocavity modes. Phys Rev Lett 102:015502ADSCrossRefGoogle Scholar
  39. 39.
    Hurley DC, Tamura S, Wolfe JP, Morkoç H (1987) Imaging of acoustic phonon stop bands in superlattices. Phys Rev Lett 58:2446ADSCrossRefGoogle Scholar
  40. 40.
    Vvedensky DD (2001) Epitaxial growth of semiconductors. In: Barnham K, Vvedensky D (eds) Low dimensional semiconductor structures: fundamentals and device applications. Cambridge University Press, Cambridge, pp 1–55CrossRefGoogle Scholar
  41. 41.
    Wybourne MN, Wigmore JK (1988) Phonon spectroscopy. Rep Prog Phys 51:923–987ADSCrossRefGoogle Scholar
  42. 42.
    Northrop GA, Wolfe JP (1984) Phonon reflection imaging: a determination of specular versus diffuse boundary scattering. Phys Rev Lett 52:2156–2159ADSCrossRefGoogle Scholar
  43. 43.
    Wolfe JP (1998) Imaging phonons: acoustic wave propagation in solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. 44.
    Rösch F, Weis O (1977) Phonon transmission from incoherent radiators into quartz, sapphire, diamond, silicon and germanium within anisotropic continuum acoustics. Z Phys B 27:33ADSCrossRefGoogle Scholar
  45. 45.
    Yamamoto A, Mishina T, Masumoto Y, Nakayama M (1994) Coherent oscillation of zone-folded phonon modes in GaAs–AlAs superlattices. Phys Rev Lett 73:740ADSCrossRefGoogle Scholar
  46. 46.
    Bartels A, Dekorsy T, Kurz H, Köhler K (1999) Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection. Phys Rev Lett 82:1044ADSCrossRefGoogle Scholar
  47. 47.
    Sun C-K, Liang J-C, Yu X-Y (2000) Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys Rev Lett 84:179ADSCrossRefGoogle Scholar
  48. 48.
    Matsuda O, Wright OB, Hurley DH, Gusev VE, Shimizu K (2004) Coherent shear phonon generation and detection with ultrashort optical pulses. Phys Rev Lett 93:095501ADSCrossRefGoogle Scholar
  49. 49.
    Trigo M, Eckhause TA, Reason M, Goldman RS, Merlin R (2006) Observation of surface-avoiding waves: a new class of extended states in periodic media. Phys Rev Lett 97:124301ADSCrossRefGoogle Scholar
  50. 50.
    Devos A, Poinsotte F, Groenen J, Dehaese O, Bertru N, Ponchet A (2007) Strong generation of coherent acoustic phonons in semiconductor quantum dots. Phys Rev Lett 98:207402ADSCrossRefGoogle Scholar
  51. 51.
    Moss DM, Akimov AV, Kent AJ, Glavin BA, Kappers MJ, Hollander JL, Moram MA, Humphreys CJ (2009) Coherent terahertz acoustic vibrations in polar and semipolar gallium nitride-based superlattices. Appl Phys Lett 94:011909ADSCrossRefGoogle Scholar
  52. 52.
    Lanzillotti-Kimura ND, Fainstein A, Perrin B, Juserrand B, Mauguin O, Largeau L, A L (2010) Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys Rev Lett 104:197402ADSCrossRefGoogle Scholar
  53. 53.
    Bruchhausen A, Gebs R, Hudert F, Issenmann D, Klatt G, Bartels A, Schecker O, Waitz R, Erbe A, Scheer E, Huntzinger J-R, Mlayah A, Dekorsy T (2011) Subharmonic resonant optical excitation of confined acoustic modes in a free-standing semiconductor membrane at GHz frequencies with a high-repetition-rate femtosecond laser. Phys Rev Lett 106:077401ADSCrossRefGoogle Scholar
  54. 54.
    Armstrong MR, Reed EJ, Kim K-Y, Glownia JH, Howard WM, Piner EL, Roberts JC (2009) Observation of terahertz radiation coherently generated by acoustic waves. Nat Phys 5:285CrossRefGoogle Scholar
  55. 55.
    Moss DM, Akimov AV, Campion RP, Kent AJ (2011) Ultrafast strain-induced electronic transport in a GaAs p–n junction diode. Chin J Phys 49:499Google Scholar
  56. 56.
    Moss DM, Akimov AV, Glavin BA, Henini M, Kent AJ (2011) Ultrafast strain-induced current in a GaAs Schottky diode. Phys Rev Lett 106:066602ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations