Skip to main content

Time-Resolved Phonon Spectroscopy and Phonon Transport in Nanoscale Systems

  • Chapter
  • First Online:
Length-Scale Dependent Phonon Interactions

Part of the book series: Topics in Applied Physics ((TAP,volume 128))

Abstract

Length scale-dependent phonon interaction is a key concept for the fundamental understanding of thermal transport in nanoscale materials. Thermally distributed phonons with various wavelengths belong to various transport regimes in nanoscale materials depending on the relative size of wavelength, mean-free-path vs. characteristic sizes of nanoscale materials. In this chapter, first a brief review is given on the phonon dispersion measurements using conventional scattering experiments and their limitations. Then a recently developed acoustic transport experiment is described. The method uses tunable acoustic source in GHz–THz frequency range which is excited by using ultrafast pulse shaping technique. Frequency-dependent mean-free-path and group velocity directly at the frequency range where phonon wavelength becomes comparable to the size of the nanoscale materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793

    Article  ADS  Google Scholar 

  2. Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30

    Article  Google Scholar 

  3. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163

    Article  ADS  Google Scholar 

  4. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168

    Article  ADS  Google Scholar 

  5. Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial JP, Gogna P (2007) New directions for Low-dimensional thermoelectric materials. Adv Mater 19:1043

    Article  Google Scholar 

  6. Balandin A, Wang KL (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58:1544

    Article  ADS  Google Scholar 

  7. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229

    Article  ADS  Google Scholar 

  8. Stroscio M, Dutta M (2001) Phonons in nanostructure. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Chang C-M, Geller MR (2005) Mesoscopic phonon transmission through a nanowire-bulk contact. Phys Rev B 71:125304

    Article  ADS  Google Scholar 

  10. Zou J, Balandin A (2002) Phonon heat conduction in a semiconductor nanowire. J Appl Phys 89:2932

    Article  ADS  Google Scholar 

  11. Chen G (2005) Nanoscale energy transport and conversion. Oxford University Press, New York

    Google Scholar 

  12. Chen G (2000) Phonon heat conduction in nanostructures. Int J Therm Sci 39:471

    Article  Google Scholar 

  13. Ziman JM (1960) Electrons and phonons. Clarendon, Oxford

    MATH  Google Scholar 

  14. Thomsen C, Grahan HT, Maris HJ, Tauc J (1986) Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 34:4129

    Article  ADS  Google Scholar 

  15. Sugawara Y, Wright OB, Matsuda O, Takigahira M, Tanaka Y, Tamura S, Gusev VE (2002) Watching ripples on crystals. Phys Rev Lett 88:1885504

    Article  ADS  Google Scholar 

  16. Bartels A, Dekorsy T, Kurz K, Kohler K (1999) Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection. Phys Rev Lett 82:1044

    Article  ADS  Google Scholar 

  17. Gusev VE, Karabutov AA (eds) (1993) Laser optoacoustics. American Institute of Physics, New York

    Google Scholar 

  18. Kinoshita S, Shimada Y, Tsurumaki W, Yamaguchi M, Yagi T (1993) New high resolution phonon spectroscopy using impulsive stimulated Brillouin scattering. Rev Sci Instrum 64:3384

    Article  ADS  Google Scholar 

  19. Yan YX, Nelson KA (1987) Impulsive stimulated light-scattering. 1. General-theory. J Chem Phys 87:6240

    Article  ADS  Google Scholar 

  20. Yan YX, Nelson KA (1987) Impulsive stimulated light-scattering. 2. Comparison to frequency-domain light-scattering spectroscopy. J Chem Phys 87:6257

    Article  ADS  Google Scholar 

  21. Zhu TC, Maris HJ, Tauc J (1991) Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz. Phys Rev B 44:4281

    Article  ADS  Google Scholar 

  22. Sun CK, Liang JC, Yu XY (2000) Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys Rev Lett 84:179

    Article  ADS  Google Scholar 

  23. Stroscio MA, Kim KW, Yu S, Ballato A (1994) Quantized acoustic phonon modes in quantum wires and quantum dots. J Appl Phys 76:4670

    Article  ADS  Google Scholar 

  24. Prasher R (2006) Thermal conductivity of tubular and core/shell nanowires. Appl Phys Lett 89:063121

    Article  ADS  Google Scholar 

  25. Farhat H, Sasaki K, Kalbac M, Hofmann M, Saito R, Dresselhaus MS, Kong J (2009) Softening of the radial breathing mode in metallic carbon nanotubes. Phys Rev Lett 102:126804

    Article  ADS  Google Scholar 

  26. Rego LGC, Kirczenow G (1998) Quantized thermal conductance of dielectric quantum wires. Phys Rev Lett 81:232

    Article  ADS  Google Scholar 

  27. Nishiguchi N, Ando Y, Wybourne MN (1997) Acoustic phonon modes of rectangular quantum wires. J Phys Condens Matter 9:5751

    Article  ADS  Google Scholar 

  28. Tian Z, Esfarjani K, Shiomi J, Henry AS, Chen G (2011) On the importance of optical phonons to thermal conductivity in nanostructures. J Appl Phys 99:053122

    Google Scholar 

  29. Sellan DP, Turney JE, McGaughey AJH, Amon CH (2011) Cross-plane phonon transport in thin films. J Appl Phys 108:113524

    Article  ADS  Google Scholar 

  30. Broido DA, Malorny M, Birner G, Mingo N, Stewart DA (2007) Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl Phys Lett 91:231922

    Article  ADS  Google Scholar 

  31. Klemens PG (1958) Thermal conductivity of lattice vibrational modes. In: Seitz F, Turnbull D (eds) Book. Academic, New York

    Google Scholar 

  32. Casimir HBG (1938) Note on the conduction of heat in crystals. Physica 5:495

    Article  ADS  Google Scholar 

  33. Majumdar A (1993) Microscale heat conduction in dielectric thin films. J Heat Transf 115:7

    Article  Google Scholar 

  34. Swartz ET, Pohl RO (1989) Thermal-boundary resistance. Rev Mod Phys 61:605

    Article  ADS  Google Scholar 

  35. Baldi G et al (2005) Brillouin ultraviolet light scattering on vitreous silica. J Non Cryst Solids 351:1919

    Article  ADS  Google Scholar 

  36. Lindsay SM, Anderson MW, Sandercock JR (1981) Construction and alignment of a high performance multipass Vernier tandem Fabry–Perot interferometer. Rev Sci Instrum 52:1478

    Article  ADS  Google Scholar 

  37. Benedek GB, Fritsch K (1966) Brillouin scattering in cubic crystals. Phys Rev 149:647

    Article  ADS  Google Scholar 

  38. Wright OB, Gusev VE (1995) Ultrafast generation of acoustic waves in copper. IEEE Trans Ultrason Ferroelectr Freq Control 42:331

    Article  Google Scholar 

  39. Eesley GL, Clemens BM, Paddock CA (1987) Generation and detection of picosecond acoustic pulses in thin metal films. Appl Phys Lett 50:717

    Article  ADS  Google Scholar 

  40. Kashiwada S, Matsuda O, Baumberg JJ, Voti RL, Wright OB (2006) In situ monitoring of the growth of ice films by laser picosecond acoustics. J Appl Phys 100:073506

    Article  ADS  Google Scholar 

  41. Thomsen C, Strait J, Vardeny Z, Maris HJ, Tauc J, Hauser JJ (1984) Coherent phonon generation and detection by picosecond light-pulses. Phys Rev Lett 53:989

    Article  ADS  Google Scholar 

  42. Tas G, Maris HJ (1994) Electron diffusion in metals studied by picosecond ultrasonics. Phys Rev B 49:15046

    Article  ADS  Google Scholar 

  43. Saito T, Matsuda O, Wright OB (2003) Picosecond acoustic phonon pulse generation in nickel and chromium. Phys Rev B 67:205421

    Article  ADS  Google Scholar 

  44. Wright OB, Kawashima K (1992) Coherent phonon detection from ultrafast surface vibrations. Phys Rev Lett 69:1668

    Article  ADS  Google Scholar 

  45. Kaganov MI, Lifshitz IM, Tanatarov LV (1957) Relaxation between electrons and the crystalline lattice. Sov Phys JETP 4:173

    MATH  Google Scholar 

  46. Wright OB (1994) Ultrafast nonequilibrium stress generation in gold and silver. Phys Rev B 49:9985

    Article  ADS  Google Scholar 

  47. Cummings MD, Elezzabi AY (2001) Ultrafast impulsive excitation of coherent longitudinal acoustic phonon oscillations in highly photoexcited InSb. Appl Phys Lett 79:770

    Article  ADS  Google Scholar 

  48. Makarona E, Daly B, Im J-S, Maris H, Nurmikko A, Han J (2002) Coherent generation of 100 GHz acoustic phonons by dynamic screening of piezoelectric fields in AlGaN/GaN multilayers. Appl Phys Lett 81:2791

    Article  ADS  Google Scholar 

  49. Matsuda O, Wright OB, Hurley DH, Gusev V, Shimizu K (2008) Coherent shear phonon generation and detection with picosecond laser acoustics. Phys Rev B 77:224110

    Article  ADS  Google Scholar 

  50. Hurley DH, Wright OB (1999) Detection of ultrafast phenomena by use of a modified Sagnac interferometer. Opt Lett 24:1305

    Article  ADS  Google Scholar 

  51. Choi JD, Feurer T, Yamaguchi M, Paxton B, Nelson KA (2005) Generation of ultrahigh-frequency tunable acoustic waves. Appl Phys Lett 87:819071

    Google Scholar 

  52. Grahn HT, Maris HJ, Tauc J, Abeles B (1988) Time-resolved study of vibrations of amorphous hydrogenated silicon multilayers. Phys Rev B 38:6066

    Article  ADS  Google Scholar 

  53. Chen W, Lu Y, Maris HJ, Xiao G (1994) Picosecond ultrasonic study of localized phonon surface modes in Al/Ag superlattices. Phys Rev B Condens Matter 50:14506–14515

    Google Scholar 

  54. Rossignol C, Perrin B, Bonello B, Djemia P, Moch P, Hurdequint H (2004) Elastic properties of ultrathin permalloy/alumina multilayer films using picosecond ultrasonics and Brillouin light scattering. Phys Rev B 70:9

    Article  Google Scholar 

  55. Foret M, Courtens E, Vacher R, Suck JB (1996) Scattering investigation of acoustic localization in fused silica. Phys Rev Lett 77:3831

    Article  ADS  Google Scholar 

  56. Benassi P, Krisch M, Masciovecchio C, Mazzacurati V, Monaco G, Ruocco G, Sette F, Verbeni R (1996) Evidence of high frequency propagating modes in vitreous silica – reply. Phys Rev Lett 78:4670

    Article  ADS  Google Scholar 

  57. Alexander S, Entin-Wohlman O, Orbach R (1986) Phonon–fracton anharmonic interactions: the thermal conductivity of amorphous materials. Phys Rev B 34:2726

    Article  ADS  Google Scholar 

  58. Nakayama T (2002) Boson peak and terahertz frequency dynamics of vitreous silica. Rep Prog Phys 65:1195

    Article  ADS  Google Scholar 

  59. Yamaguchi M, Nakayama T, Yagi T (1998) Effects of high pressure on the Bose peak in a-GeS2 studied by light scattering. Physica B 263–264:258

    Google Scholar 

  60. Yang B, Chen G (2003) Partially coherent phonon heat conduction in superlattices. Phys Rev B 67:195311–195314

    Article  ADS  Google Scholar 

  61. Yoshino Y (2009) Piezoelectric thin films and their applications for electronics. J Appl Phys 105:061623

    Article  ADS  Google Scholar 

  62. Morath CJ, Maris HJ (1996) Phonon attenuation in amorphous solids studied by picosecond ultrasonics. Phys Rev B 54:203

    Article  ADS  Google Scholar 

  63. Yamamoto A, Mishina T, Masumoto Y, Nakayama M (1994) Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices. Phys Rev Lett 73:740

    Article  ADS  Google Scholar 

  64. Klieber C, Peronne E, Katayama K, Choi J, Yamaguchi M, Pezeril T, Nelson KA (2011) Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz. Appl Phys Lett 98:211908

    Article  ADS  Google Scholar 

  65. Yu C-T, Lin K-H, Hsieh C-L, Pan C-C, Chyi J-I, Sun C-K (2005) Generation of frequency-tunable nanoacoustic waves by optical coherent control. Appl Phys Lett 87:093114

    Article  ADS  Google Scholar 

  66. Glorieux C, Beers JD, Bentefour EH, van de Rostyne K, Nelson KA (2004) Phase mask based interferometer: operation principle, performance, and application to thermoelastic phenomena. Rev Sci Instrum 75:2906

    Article  ADS  Google Scholar 

  67. Courtens E, Foret M, Hehlen B, Ruffl’e B, Vacher R (2003) The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica. J Phys Condens Matter 15:S1279

    Article  ADS  Google Scholar 

  68. Masciovecchio C, Ruocco G, Sette F, Krisch M, Verbeni R, Bergmann U, Soltwisch M (1996) Observation of large momentum phonon like modes in glasses. Phys Rev Lett 76:3356

    Article  ADS  Google Scholar 

  69. Zeller RC, Pohl RO (1971) Thermal conductivity and specific heat of noncrystalline solids. Phys Rev B 4:2029

    Article  ADS  Google Scholar 

  70. Hunklinger S, Arnold W (1976) In: Thurston RN, Mason WP (eds) Physical acoustics XII. Academic, New York, pp 155–215

    Google Scholar 

  71. Buchenau U (2001) Dynamics of glasses. J Phys Condens Matter 13:7827

    Article  ADS  Google Scholar 

  72. Ruffle B, Parshin DA, Courtens E, Vacher R (2008) Boson peak and its relation to acoustic attenuation in glasses. Phys Rev Lett 100:015501

    Article  ADS  Google Scholar 

  73. Schirmacher W, Ruocco G, Scopigno T (2007) Acoustic attenuation in glasses and its relation with the boson peak. Phys Rev Lett 98:025501

    Article  ADS  Google Scholar 

  74. Masciovecchio C et al (2006) Evidence for a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97:035501

    Article  ADS  Google Scholar 

  75. Rat E, Foret M, Courtens E, Vacher R, Arai M (1999) Observation of the crossover to strong scattering of acoustic phonons in densified silica. Phys Rev Lett 83:1355

    Article  ADS  Google Scholar 

  76. Courtens E, Foret M, Hehlen B, Vacher R (2001) The vibrational modes of glasses. Solid State Commun 117:187

    Article  ADS  Google Scholar 

  77. Ruocco G, Sette F (2001) High-frequency vibrational dynamics in glasses. J Phys Condens Matter 13:9141

    Article  ADS  Google Scholar 

  78. Foret M, Vacher R, Courtens E, Monaco G (2002) Merging of the acoustic branch with the boson peak in densified silica glass. Phys Rev B 66:024204

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Yamaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamaguchi, M. (2014). Time-Resolved Phonon Spectroscopy and Phonon Transport in Nanoscale Systems. In: Shindé, S., Srivastava, G. (eds) Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8651-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8651-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8650-3

  • Online ISBN: 978-1-4614-8651-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics