Time-Resolved Phonon Spectroscopy and Phonon Transport in Nanoscale Systems

  • Masashi YamaguchiEmail author
Part of the Topics in Applied Physics book series (TAP, volume 128)


Length scale-dependent phonon interaction is a key concept for the fundamental understanding of thermal transport in nanoscale materials. Thermally distributed phonons with various wavelengths belong to various transport regimes in nanoscale materials depending on the relative size of wavelength, mean-free-path vs. characteristic sizes of nanoscale materials. In this chapter, first a brief review is given on the phonon dispersion measurements using conventional scattering experiments and their limitations. Then a recently developed acoustic transport experiment is described. The method uses tunable acoustic source in GHz–THz frequency range which is excited by using ultrafast pulse shaping technique. Frequency-dependent mean-free-path and group velocity directly at the frequency range where phonon wavelength becomes comparable to the size of the nanoscale materials.


Probe Pulse Acoustic Phonon Thermal Transport Phonon Dispersion Acoustic Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93:793ADSCrossRefGoogle Scholar
  2. 2.
    Schelling PK, Shi L, Goodson KE (2005) Managing heat for electronics. Mater Today 8:30CrossRefGoogle Scholar
  3. 3.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163ADSCrossRefGoogle Scholar
  4. 4.
    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu J-K, Goddard WA III, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168ADSCrossRefGoogle Scholar
  5. 5.
    Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial JP, Gogna P (2007) New directions for Low-dimensional thermoelectric materials. Adv Mater 19:1043CrossRefGoogle Scholar
  6. 6.
    Balandin A, Wang KL (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58:1544ADSCrossRefGoogle Scholar
  7. 7.
    Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229ADSCrossRefGoogle Scholar
  8. 8.
    Stroscio M, Dutta M (2001) Phonons in nanostructure. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. 9.
    Chang C-M, Geller MR (2005) Mesoscopic phonon transmission through a nanowire-bulk contact. Phys Rev B 71:125304ADSCrossRefGoogle Scholar
  10. 10.
    Zou J, Balandin A (2002) Phonon heat conduction in a semiconductor nanowire. J Appl Phys 89:2932ADSCrossRefGoogle Scholar
  11. 11.
    Chen G (2005) Nanoscale energy transport and conversion. Oxford University Press, New YorkGoogle Scholar
  12. 12.
    Chen G (2000) Phonon heat conduction in nanostructures. Int J Therm Sci 39:471CrossRefGoogle Scholar
  13. 13.
    Ziman JM (1960) Electrons and phonons. Clarendon, OxfordzbMATHGoogle Scholar
  14. 14.
    Thomsen C, Grahan HT, Maris HJ, Tauc J (1986) Surface generation and detection of phonons by picosecond light pulses. Phys Rev B 34:4129ADSCrossRefGoogle Scholar
  15. 15.
    Sugawara Y, Wright OB, Matsuda O, Takigahira M, Tanaka Y, Tamura S, Gusev VE (2002) Watching ripples on crystals. Phys Rev Lett 88:1885504ADSCrossRefGoogle Scholar
  16. 16.
    Bartels A, Dekorsy T, Kurz K, Kohler K (1999) Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection. Phys Rev Lett 82:1044ADSCrossRefGoogle Scholar
  17. 17.
    Gusev VE, Karabutov AA (eds) (1993) Laser optoacoustics. American Institute of Physics, New YorkGoogle Scholar
  18. 18.
    Kinoshita S, Shimada Y, Tsurumaki W, Yamaguchi M, Yagi T (1993) New high resolution phonon spectroscopy using impulsive stimulated Brillouin scattering. Rev Sci Instrum 64:3384ADSCrossRefGoogle Scholar
  19. 19.
    Yan YX, Nelson KA (1987) Impulsive stimulated light-scattering. 1. General-theory. J Chem Phys 87:6240ADSCrossRefGoogle Scholar
  20. 20.
    Yan YX, Nelson KA (1987) Impulsive stimulated light-scattering. 2. Comparison to frequency-domain light-scattering spectroscopy. J Chem Phys 87:6257ADSCrossRefGoogle Scholar
  21. 21.
    Zhu TC, Maris HJ, Tauc J (1991) Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz. Phys Rev B 44:4281ADSCrossRefGoogle Scholar
  22. 22.
    Sun CK, Liang JC, Yu XY (2000) Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys Rev Lett 84:179ADSCrossRefGoogle Scholar
  23. 23.
    Stroscio MA, Kim KW, Yu S, Ballato A (1994) Quantized acoustic phonon modes in quantum wires and quantum dots. J Appl Phys 76:4670ADSCrossRefGoogle Scholar
  24. 24.
    Prasher R (2006) Thermal conductivity of tubular and core/shell nanowires. Appl Phys Lett 89:063121ADSCrossRefGoogle Scholar
  25. 25.
    Farhat H, Sasaki K, Kalbac M, Hofmann M, Saito R, Dresselhaus MS, Kong J (2009) Softening of the radial breathing mode in metallic carbon nanotubes. Phys Rev Lett 102:126804ADSCrossRefGoogle Scholar
  26. 26.
    Rego LGC, Kirczenow G (1998) Quantized thermal conductance of dielectric quantum wires. Phys Rev Lett 81:232ADSCrossRefGoogle Scholar
  27. 27.
    Nishiguchi N, Ando Y, Wybourne MN (1997) Acoustic phonon modes of rectangular quantum wires. J Phys Condens Matter 9:5751ADSCrossRefGoogle Scholar
  28. 28.
    Tian Z, Esfarjani K, Shiomi J, Henry AS, Chen G (2011) On the importance of optical phonons to thermal conductivity in nanostructures. J Appl Phys 99:053122Google Scholar
  29. 29.
    Sellan DP, Turney JE, McGaughey AJH, Amon CH (2011) Cross-plane phonon transport in thin films. J Appl Phys 108:113524ADSCrossRefGoogle Scholar
  30. 30.
    Broido DA, Malorny M, Birner G, Mingo N, Stewart DA (2007) Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl Phys Lett 91:231922ADSCrossRefGoogle Scholar
  31. 31.
    Klemens PG (1958) Thermal conductivity of lattice vibrational modes. In: Seitz F, Turnbull D (eds) Book. Academic, New YorkGoogle Scholar
  32. 32.
    Casimir HBG (1938) Note on the conduction of heat in crystals. Physica 5:495ADSCrossRefGoogle Scholar
  33. 33.
    Majumdar A (1993) Microscale heat conduction in dielectric thin films. J Heat Transf 115:7CrossRefGoogle Scholar
  34. 34.
    Swartz ET, Pohl RO (1989) Thermal-boundary resistance. Rev Mod Phys 61:605ADSCrossRefGoogle Scholar
  35. 35.
    Baldi G et al (2005) Brillouin ultraviolet light scattering on vitreous silica. J Non Cryst Solids 351:1919ADSCrossRefGoogle Scholar
  36. 36.
    Lindsay SM, Anderson MW, Sandercock JR (1981) Construction and alignment of a high performance multipass Vernier tandem Fabry–Perot interferometer. Rev Sci Instrum 52:1478ADSCrossRefGoogle Scholar
  37. 37.
    Benedek GB, Fritsch K (1966) Brillouin scattering in cubic crystals. Phys Rev 149:647ADSCrossRefGoogle Scholar
  38. 38.
    Wright OB, Gusev VE (1995) Ultrafast generation of acoustic waves in copper. IEEE Trans Ultrason Ferroelectr Freq Control 42:331CrossRefGoogle Scholar
  39. 39.
    Eesley GL, Clemens BM, Paddock CA (1987) Generation and detection of picosecond acoustic pulses in thin metal films. Appl Phys Lett 50:717ADSCrossRefGoogle Scholar
  40. 40.
    Kashiwada S, Matsuda O, Baumberg JJ, Voti RL, Wright OB (2006) In situ monitoring of the growth of ice films by laser picosecond acoustics. J Appl Phys 100:073506ADSCrossRefGoogle Scholar
  41. 41.
    Thomsen C, Strait J, Vardeny Z, Maris HJ, Tauc J, Hauser JJ (1984) Coherent phonon generation and detection by picosecond light-pulses. Phys Rev Lett 53:989ADSCrossRefGoogle Scholar
  42. 42.
    Tas G, Maris HJ (1994) Electron diffusion in metals studied by picosecond ultrasonics. Phys Rev B 49:15046ADSCrossRefGoogle Scholar
  43. 43.
    Saito T, Matsuda O, Wright OB (2003) Picosecond acoustic phonon pulse generation in nickel and chromium. Phys Rev B 67:205421ADSCrossRefGoogle Scholar
  44. 44.
    Wright OB, Kawashima K (1992) Coherent phonon detection from ultrafast surface vibrations. Phys Rev Lett 69:1668ADSCrossRefGoogle Scholar
  45. 45.
    Kaganov MI, Lifshitz IM, Tanatarov LV (1957) Relaxation between electrons and the crystalline lattice. Sov Phys JETP 4:173zbMATHGoogle Scholar
  46. 46.
    Wright OB (1994) Ultrafast nonequilibrium stress generation in gold and silver. Phys Rev B 49:9985ADSCrossRefGoogle Scholar
  47. 47.
    Cummings MD, Elezzabi AY (2001) Ultrafast impulsive excitation of coherent longitudinal acoustic phonon oscillations in highly photoexcited InSb. Appl Phys Lett 79:770ADSCrossRefGoogle Scholar
  48. 48.
    Makarona E, Daly B, Im J-S, Maris H, Nurmikko A, Han J (2002) Coherent generation of 100 GHz acoustic phonons by dynamic screening of piezoelectric fields in AlGaN/GaN multilayers. Appl Phys Lett 81:2791ADSCrossRefGoogle Scholar
  49. 49.
    Matsuda O, Wright OB, Hurley DH, Gusev V, Shimizu K (2008) Coherent shear phonon generation and detection with picosecond laser acoustics. Phys Rev B 77:224110ADSCrossRefGoogle Scholar
  50. 50.
    Hurley DH, Wright OB (1999) Detection of ultrafast phenomena by use of a modified Sagnac interferometer. Opt Lett 24:1305ADSCrossRefGoogle Scholar
  51. 51.
    Choi JD, Feurer T, Yamaguchi M, Paxton B, Nelson KA (2005) Generation of ultrahigh-frequency tunable acoustic waves. Appl Phys Lett 87:819071Google Scholar
  52. 52.
    Grahn HT, Maris HJ, Tauc J, Abeles B (1988) Time-resolved study of vibrations of amorphous hydrogenated silicon multilayers. Phys Rev B 38:6066ADSCrossRefGoogle Scholar
  53. 53.
    Chen W, Lu Y, Maris HJ, Xiao G (1994) Picosecond ultrasonic study of localized phonon surface modes in Al/Ag superlattices. Phys Rev B Condens Matter 50:14506–14515Google Scholar
  54. 54.
    Rossignol C, Perrin B, Bonello B, Djemia P, Moch P, Hurdequint H (2004) Elastic properties of ultrathin permalloy/alumina multilayer films using picosecond ultrasonics and Brillouin light scattering. Phys Rev B 70:9CrossRefGoogle Scholar
  55. 55.
    Foret M, Courtens E, Vacher R, Suck JB (1996) Scattering investigation of acoustic localization in fused silica. Phys Rev Lett 77:3831ADSCrossRefGoogle Scholar
  56. 56.
    Benassi P, Krisch M, Masciovecchio C, Mazzacurati V, Monaco G, Ruocco G, Sette F, Verbeni R (1996) Evidence of high frequency propagating modes in vitreous silica – reply. Phys Rev Lett 78:4670ADSCrossRefGoogle Scholar
  57. 57.
    Alexander S, Entin-Wohlman O, Orbach R (1986) Phonon–fracton anharmonic interactions: the thermal conductivity of amorphous materials. Phys Rev B 34:2726ADSCrossRefGoogle Scholar
  58. 58.
    Nakayama T (2002) Boson peak and terahertz frequency dynamics of vitreous silica. Rep Prog Phys 65:1195ADSCrossRefGoogle Scholar
  59. 59.
    Yamaguchi M, Nakayama T, Yagi T (1998) Effects of high pressure on the Bose peak in a-GeS2 studied by light scattering. Physica B 263–264:258Google Scholar
  60. 60.
    Yang B, Chen G (2003) Partially coherent phonon heat conduction in superlattices. Phys Rev B 67:195311–195314ADSCrossRefGoogle Scholar
  61. 61.
    Yoshino Y (2009) Piezoelectric thin films and their applications for electronics. J Appl Phys 105:061623ADSCrossRefGoogle Scholar
  62. 62.
    Morath CJ, Maris HJ (1996) Phonon attenuation in amorphous solids studied by picosecond ultrasonics. Phys Rev B 54:203ADSCrossRefGoogle Scholar
  63. 63.
    Yamamoto A, Mishina T, Masumoto Y, Nakayama M (1994) Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices. Phys Rev Lett 73:740ADSCrossRefGoogle Scholar
  64. 64.
    Klieber C, Peronne E, Katayama K, Choi J, Yamaguchi M, Pezeril T, Nelson KA (2011) Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz. Appl Phys Lett 98:211908ADSCrossRefGoogle Scholar
  65. 65.
    Yu C-T, Lin K-H, Hsieh C-L, Pan C-C, Chyi J-I, Sun C-K (2005) Generation of frequency-tunable nanoacoustic waves by optical coherent control. Appl Phys Lett 87:093114ADSCrossRefGoogle Scholar
  66. 66.
    Glorieux C, Beers JD, Bentefour EH, van de Rostyne K, Nelson KA (2004) Phase mask based interferometer: operation principle, performance, and application to thermoelastic phenomena. Rev Sci Instrum 75:2906ADSCrossRefGoogle Scholar
  67. 67.
    Courtens E, Foret M, Hehlen B, Ruffl’e B, Vacher R (2003) The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica. J Phys Condens Matter 15:S1279ADSCrossRefGoogle Scholar
  68. 68.
    Masciovecchio C, Ruocco G, Sette F, Krisch M, Verbeni R, Bergmann U, Soltwisch M (1996) Observation of large momentum phonon like modes in glasses. Phys Rev Lett 76:3356ADSCrossRefGoogle Scholar
  69. 69.
    Zeller RC, Pohl RO (1971) Thermal conductivity and specific heat of noncrystalline solids. Phys Rev B 4:2029ADSCrossRefGoogle Scholar
  70. 70.
    Hunklinger S, Arnold W (1976) In: Thurston RN, Mason WP (eds) Physical acoustics XII. Academic, New York, pp 155–215Google Scholar
  71. 71.
    Buchenau U (2001) Dynamics of glasses. J Phys Condens Matter 13:7827ADSCrossRefGoogle Scholar
  72. 72.
    Ruffle B, Parshin DA, Courtens E, Vacher R (2008) Boson peak and its relation to acoustic attenuation in glasses. Phys Rev Lett 100:015501ADSCrossRefGoogle Scholar
  73. 73.
    Schirmacher W, Ruocco G, Scopigno T (2007) Acoustic attenuation in glasses and its relation with the boson peak. Phys Rev Lett 98:025501ADSCrossRefGoogle Scholar
  74. 74.
    Masciovecchio C et al (2006) Evidence for a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97:035501ADSCrossRefGoogle Scholar
  75. 75.
    Rat E, Foret M, Courtens E, Vacher R, Arai M (1999) Observation of the crossover to strong scattering of acoustic phonons in densified silica. Phys Rev Lett 83:1355ADSCrossRefGoogle Scholar
  76. 76.
    Courtens E, Foret M, Hehlen B, Vacher R (2001) The vibrational modes of glasses. Solid State Commun 117:187ADSCrossRefGoogle Scholar
  77. 77.
    Ruocco G, Sette F (2001) High-frequency vibrational dynamics in glasses. J Phys Condens Matter 13:9141ADSCrossRefGoogle Scholar
  78. 78.
    Foret M, Vacher R, Courtens E, Monaco G (2002) Merging of the acoustic branch with the boson peak in densified silica glass. Phys Rev B 66:024204ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics, Applied Physics, and AstronomyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations