Advertisement

Ab Initio Thermal Transport

  • N. Mingo
  • D. A. Stewart
  • D. A. BroidoEmail author
  • L. Lindsay
  • W. Li
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 128)

Abstract

Ab initio (or first principles) approaches are able to predict materials properties without the use of any adjustable parameters. This chapter presents some of our recently developed techniques for the ab initio evaluation of the lattice thermal conductivity of crystalline bulk materials and alloys, and nanoscale materials including embedded nanoparticle composites.

Keywords

Brillouin Zone Thermal Transport Lattice Thermal Conductivity Phonon Dispersion Boltzmann Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank A. Ward, I. Savic, S. Wang, G. Deinzer, M. Malorny, K. Esfarjani, A. Kundu, and N. A. Katcho, for their contribution to the works cited or summarized in this chapter. We are grateful to A. Shakouri, L. Shi, F. Mauri, M. Lazzeri, and N. Vast for helpful discussions. We acknowledge support from the National Science Foundation under grant Nos. 1066634 and 1066406, the EU, Agence Nationale de la Recherche, CEA, and Fondation Nanosciences. L.L. acknowledges support from DARPA and from the NRC/NRL Research Associateship Program. A portion of the calculations discussed in this chapter were calculated using the Intel Cluster at the Cornell Nanoscale Facility, part of the National Nanotechnology Infrastructure Network funded by the NSF.

References

  1. 1.
    Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793ADSGoogle Scholar
  2. 2.
    Ziman JM (1960) Electrons and phonons. Oxford University Press LondonGoogle Scholar
  3. 3.
    Callaway J (1991) Quantum theory of the solid state. Academic Press, New YorkGoogle Scholar
  4. 4.
    Srivastava GP (1990) The physics of phonons. Adam Hilger, BristolGoogle Scholar
  5. 5.
    Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov AP, Inyushkin AV, Taldenkov A, Ozhogin VI, Itoh KM, Haller E (1997) Phys Rev B 56:9431ADSGoogle Scholar
  6. 6.
    Han YJ, Klemens PG (1993) Phys Rev B 48:6033ADSGoogle Scholar
  7. 7.
    Tamura SI, Tanaka Y, Maris HJ (1999) Phys Rev B 60:2627ADSGoogle Scholar
  8. 8.
    Khitun A, Wang KL (2001) Appl Phys Lett 79:851ADSGoogle Scholar
  9. 9.
    Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613ADSGoogle Scholar
  10. 10.
    Ponomareva I, Srivastava D, Menon M (2007) Nano Lett 7:1155ADSGoogle Scholar
  11. 11.
    Lukes J, Zhong H (2007) J Heat Trans 129:705Google Scholar
  12. 12.
    Volz S, Chen G (1999) Appl Phys Lett 75:2056ADSGoogle Scholar
  13. 13.
    Che J, Cagin T, Deng W, Goddard III WA (2000) J Chem Phys 113:6888ADSGoogle Scholar
  14. 14.
    Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mod Phys 73:515ADSGoogle Scholar
  15. 15.
    Mingo N, Yang L (2003) Phys Rev B 68:245406ADSGoogle Scholar
  16. 16.
    Broido DA, Malorny M, Birner G, Mingo N, Stewart DA (2007) Appl Phys Lett 91:231922ADSGoogle Scholar
  17. 17.
    Mingo N, Stewart DA, Broido DA, Srivastava D (2008) Phys Rev B 77:033418ADSGoogle Scholar
  18. 18.
    Savic I, Mingo N, Stewart DA (2008) Phys Rev Lett 101:165502ADSGoogle Scholar
  19. 19.
    Stewart DA, Savic I, Mingo N (2009) Nano Lett 9:81ADSGoogle Scholar
  20. 20.
    Savic I, Stewart DA, Mingo N (2008) Phys Rev B 78:235434ADSGoogle Scholar
  21. 21.
    Ward A, Broido DA, Stewart DA, Deinzer G (2009) Phys Rev B 80:125203ADSGoogle Scholar
  22. 22.
    Kundu A, Mingo N, Broido DA, Stewart DA (2011) Phys Rev B 84:125426. DOI 10.1103/ PhysRevB.84.125426. URL http://link.aps.org/doi/10.1103/PhysRevB.84.125426
  23. 23.
    Li W, Mingo N, Lindsay L, Broido DA, Stewart DA, Katcho NA (2012) Phys Rev B 85:195436. DOI 10.1103/PhysRevB.85.195436. URL http://link.aps.org/doi/10.1103/PhysRevB.85.195436
  24. 24.
    Peierls RE (1929) Ann Phys (Liepzig) 3:1055ADSzbMATHGoogle Scholar
  25. 25.
    Peierls RE (1955) Quantum theory of solids. Clarendon, OxfordzbMATHGoogle Scholar
  26. 26.
    Omini M, Sparavigna A (1995) Phys B 212:101ADSGoogle Scholar
  27. 27.
    Omini M, Sparavigna A (1996) Phys Rev B 53:9064ADSGoogle Scholar
  28. 28.
    Omini M, Sparavigna A (1997) Nuovo Cimento D 19:1537ADSGoogle Scholar
  29. 29.
    Sparavigna A (2002) Phys Rev B 65:064305ADSGoogle Scholar
  30. 30.
    Sparavigna A (2002) Phys Rev B 66:174301ADSGoogle Scholar
  31. 31.
    Broido DA, Ward A, Mingo N (2005) Phys Rev B 72:014308ADSGoogle Scholar
  32. 32.
    Pascual-Gutierrez JA, Murthy JY, Viskanta R (2009) J Appl Phys 106:063532ADSGoogle Scholar
  33. 33.
    Mingo N, Esfarjani K, Broido DA, Stewart DA (2010) Phys Rev B 81:045408ADSGoogle Scholar
  34. 34.
    Tamura S (1983) Phys Rev B 27:858ADSGoogle Scholar
  35. 35.
    Gilat G, Raubenheimer LJ (1966) Phys Rev B 144:390ADSGoogle Scholar
  36. 36.
    Lambin P, Vigneron JP (1984) Phys Rev B 29:3430ADSGoogle Scholar
  37. 37.
    Yates JR, Wang X, Vanderbilt D, Souza I (2007) Phys Rev B 75:195121. DOI 10.1103/PhysRevB.75.195121. URL http://link.aps.org/doi/10.1103/PhysRevB.75.195121
  38. 38.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864MathSciNetADSGoogle Scholar
  39. 39.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133MathSciNetADSGoogle Scholar
  40. 40.
    Martin RM (2004) Electronic structure: basic theory and practical applications. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Mattsson AE, Schultz PA, Desjarlais MP, Mattsson TR, Leung K (2005) Model Simulat Mater Sci Eng 13:R1ADSGoogle Scholar
  42. 42.
    Hellmann H (1937) Einfuhrung in die quantenchemie. Deuticke, LeipzigGoogle Scholar
  43. 43.
    Feynman RP (1939) Phys Rev 56:340ADSzbMATHGoogle Scholar
  44. 44.
    Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Phys Rev B 43:7231ADSGoogle Scholar
  45. 45.
    Zein EN (1984) Sov Phys Solid State 26:1825Google Scholar
  46. 46.
    Baroni S, Giannozzi P, Testa A (1987) Phys Rev Lett 59:2662ADSGoogle Scholar
  47. 47.
    Mounet N, Marzari N (2005) Phys Rev B 71:205214ADSGoogle Scholar
  48. 48.
    Giannozzi P, et al (2009) J Phys Conds Matter 21:395502Google Scholar
  49. 49.
    Gonze X, et al (2009) Comput Phys Commun 180:2582ADSGoogle Scholar
  50. 50.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) Zeitschrift fur Kristallographie 220:567ADSGoogle Scholar
  51. 51.
    Gonze X, Vigneron JP (1989) Phys Rev B 39:13120ADSGoogle Scholar
  52. 52.
    Gonze X (1995) Phys Rev A 52:1096ADSGoogle Scholar
  53. 53.
    Debernardi A, Baroni S, Molinari E (1995) Phys Rev Lett 75:1819ADSGoogle Scholar
  54. 54.
    Lang G, Karch K, Schmitt M, Pavone P, Mayer AP, Wehner RK, Strauch D (1999) Phys Rev B 59:6182ADSGoogle Scholar
  55. 55.
    Debernardi A (1998) Phys Rev B 57:12847ADSGoogle Scholar
  56. 56.
    Deinzer G, Birner G, Strauch D (2003) Phys Rev B 67:144304ADSGoogle Scholar
  57. 57.
    Coldwell-Horsfall RA (1963) Phys Rev 129:22ADSzbMATHGoogle Scholar
  58. 58.
    Soler JM, Artacho E, Gale JD, Garcia A (2002) J Phys Condens Matter 14:2745ADSGoogle Scholar
  59. 59.
    Ozaki T (2003) Phys Rev B 67:155108ADSGoogle Scholar
  60. 60.
    Bowler DR, Miyazaki T (2010) J Phys Condens Matter 22:074207ADSGoogle Scholar
  61. 61.
    Skylaris CK, Haynes PD, Mostofi AA, Payne MC (2005) J Chem Phys 122:084119ADSGoogle Scholar
  62. 62.
    Kresse G, Furthmuller J, Hafner J (1995) Europhys Lett 32:729ADSGoogle Scholar
  63. 63.
    Frank W, Elsasser C, Fahnle M (1995) Phys Rev Lett 74:1791ADSGoogle Scholar
  64. 64.
    Parlinski K, Li ZQ, Kawazoe Y (1997) Phys Rev Lett 78:4063ADSGoogle Scholar
  65. 65.
    Artacho E, Anglada E, Diéguez O, Gale JD, García A, Junquera J, Martin RM, Ordejón P, Pruneda JM, Sánchez-Portal D, Soler JM (2008) J Phys Condens Matter 20:064208ADSGoogle Scholar
  66. 66.
    Alfe D (2009) Comp Phys Comm 180:2622ADSGoogle Scholar
  67. 67.
    Togo A, Oba F, Tanaka I (2008) Phys Rev B 78:134106ADSGoogle Scholar
  68. 68.
    Esfarjani K, Stokes HT (2008) Phys Rev B 77:144112ADSGoogle Scholar
  69. 69.
    Tang X, Dong J (2009) Phys Earth Planet Inter 174:33MathSciNetADSGoogle Scholar
  70. 70.
    Garg J, Bonini N, Kozinsky B, Marzari N (2011) Phys Rev Lett 106(4), 045901. DOI 10.1103/PhysRevLett.106.045901Google Scholar
  71. 71.
    Chaput L, Togo A, Tanaka I, Hug G (2011) Phys Rev B 84:094302ADSGoogle Scholar
  72. 72.
    Lyddane RH, Sachs RG, Teller E (1941) Phys Rev 59:673ADSzbMATHGoogle Scholar
  73. 73.
    Cochran W, Cowley RA (1962) J Phys Chem Solid 23:447ADSGoogle Scholar
  74. 74.
    Detraux F, Ghosez P, Gonze X (1998) Phys Rev Lett 81:3297ADSGoogle Scholar
  75. 75.
    Parlinksi K, Li ZQ, Kawazoe Y (1998) Phys Rev Lett 81:3298ADSGoogle Scholar
  76. 76.
    An J, Subedi A, Singh DJ (2008) Solid State Comm 148:417ADSGoogle Scholar
  77. 77.
    Kilian O, Allan G, Wirtz L (2009) Phys Rev B 80:245208ADSGoogle Scholar
  78. 78.
    Deinzer G, Schmitt M, Mayer AP, Strauch D (2004) Phys Rev B 69:014304ADSGoogle Scholar
  79. 79.
    Leibfried G, Ludwig W (1961) Solid State Phys 12:275MathSciNetGoogle Scholar
  80. 80.
    Maradudin AA, Horton GK (1974) Dynamical properties of solids. North-Holland, AmsterdamGoogle Scholar
  81. 81.
    Mahan GD, Jeon GS (2004) Phys Rev B 70:075405ADSGoogle Scholar
  82. 82.
    Mounet N, Marzari N (2005) Phys Rev B 71:205214ADSGoogle Scholar
  83. 83.
    Arfken GB (1985) Mathematical methods for physicists. Academic Press, New YorkGoogle Scholar
  84. 84.
    Yin MT, Cohen ML (1982) Phys Rev B 26:3259ADSGoogle Scholar
  85. 85.
    Nilsson G, Nelin G (1972) Phys Rev B 6:3777ADSGoogle Scholar
  86. 86.
    Warren JL, Yarnell JL, Dolling G, Cowley RA (1967) Phys Rev 158:805ADSGoogle Scholar
  87. 87.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188MathSciNetADSGoogle Scholar
  88. 88.
    von Barth U, Car R (1993) (Unpublished) for a brief description of this method, see Corso AD, Baroni S, Resta R, de Gironcoli S, Phys Rev B 47:3588Google Scholar
  89. 89.
    Inyushkin AV, Taldenkov AN, Gibin AM, Gusev AV, Pohl HJ (2004) Phys Stat Solid C 1:2995Google Scholar
  90. 90.
    Ozhogin VI, Inyushkin AV, Taldenkov AN, Tikhomirov AV, Popov GE (1996) JETP Lett 63:490ADSGoogle Scholar
  91. 91.
    Bachelet GB, Hamann DR, Schluter M (1982) Phys Rev B 26:4199ADSGoogle Scholar
  92. 92.
    Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF (1993) Phys Rev B 47:14850ADSGoogle Scholar
  93. 93.
    Wei L, Kuo PK, Thomas RL, Anthony TR, Banholzer WF (1993) Phys Rev Lett 70:3764ADSGoogle Scholar
  94. 94.
    Berman R, Hudson PRW, Martinez M (1975) J Phys C Solid State Phys 8:L430ADSGoogle Scholar
  95. 95.
    Onn DG, Witek A, Qiu YZ, Anthony TR, Banholzer WF (1992) Phys Rev Lett 68:2806ADSGoogle Scholar
  96. 96.
    Ward A, Broido DA (2010) Phys Rev B 81:085205ADSGoogle Scholar
  97. 97.
    Lindsay L, Broido DA (2008) J Phys Condens Matt 20:165209ADSGoogle Scholar
  98. 98.
    Srivastava GP (1980) In: Maris HJ (ed) Phonon scattering in solids. Plenum Press, New York, p 149Google Scholar
  99. 99.
    Srivastava GP (1980) J Phys Chem Solids 41:357ADSGoogle Scholar
  100. 100.
    Abeles B (1963) Phys Rev 131:1906. DOI 10.1103/PhysRev.131.1906ADSGoogle Scholar
  101. 101.
    Adachi S (2007) J Appl Phys 102(6):063502. DOI 10.1063/1.2779259ADSGoogle Scholar
  102. 102.
    Abeles B, Beers DS, Cody GD, Dismukes JP (1962) Phys Rev 125:44. DOI 10.1103/PhysRev.125.44ADSGoogle Scholar
  103. 103.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:105. DOI 10.1038/nmat2090ADSGoogle Scholar
  104. 104.
    Lan Y, Minnich AJ, Chen G, Ren Z (2010) Adv Funct Mater 20:357Google Scholar
  105. 105.
    Savic I (2009) Private communicationGoogle Scholar
  106. 106.
    Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Phys Rev Lett 96(4):045901. DOI 10.1103/PhysRevLett.96.045901ADSGoogle Scholar
  107. 107.
    Kim W, Majumdar A (2006) J Appl Phys 99(8):084306. DOI 10.1063/1.2188251ADSGoogle Scholar
  108. 108.
    Mingo N, Hauser D, Kobayashi NP, Plissonnier M, Shakouri A (2009) Nano Lett 9:711ADSGoogle Scholar
  109. 109.
    Stackhouse S, Stixrude L, Karki BB (2010) Phys Rev Lett 104:208501ADSGoogle Scholar
  110. 110.
    Manthilake GM, de Koker N, Frost DJ, McCammon CA (2011) Proc Natl Acad Sci USA 108:17901ADSGoogle Scholar
  111. 111.
    Stamenković V, Breuer D, Spohn T (2011) Icarus 216:572ADSGoogle Scholar
  112. 112.
    Green MS (1954) J Chem Phys 22:398MathSciNetADSGoogle Scholar
  113. 113.
    Kubo R (1957) J Phys Soc Jpn 12:570MathSciNetADSGoogle Scholar
  114. 114.
    Shiomi J, Esfarjani K, Chen G (2011) Phys Rev B 84:104302. DOI 10.1103/PhysRevB.84.104302. URL http://link.aps.org/doi/10.1103/PhysRevB.84.104302
  115. 115.
    Stackhouse S, Stixrude L (2010) Rev Mineral Geochem 71:253Google Scholar
  116. 116.
    de Koker N (2009) Phys Rev Lett 103:125902ADSGoogle Scholar
  117. 117.
    de Koker N (2010) Earth Planet Sci Lett 292:392ADSGoogle Scholar
  118. 118.
    Tang X, Dong J (2010) Proc Natl Acad Sci 107:4539ADSGoogle Scholar
  119. 119.
    Sun T, Allen PB (2010) Phys Rev B 82(22):224305. DOI 10.1103/PhysRevB.82.224305ADSGoogle Scholar
  120. 120.
    Sun T, Shen X, Allen PB (2010) Phys Rev B 82:224304ADSGoogle Scholar
  121. 121.
    Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phys Rev Lett 99:176802ADSGoogle Scholar
  122. 122.
    Bonini N, Rao R, Rao AM, Marzari N, Menéndez J (2008) Phys Stat Sol (b) 245:2149ADSGoogle Scholar
  123. 123.
    Bonini N, Garg J, Marzari N (2012) Nano Lett 12:2673Google Scholar
  124. 124.
    Delaire O, Ma J, Marty K, May AF, McGuire MA, Du MH, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales B (2011) Nat Mater 10:614ADSGoogle Scholar
  125. 125.
    Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G (2012) Phys Rev B 85:155203ADSGoogle Scholar
  126. 126.
    Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G (2012) Phys Rev B 85:184303ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. Mingo
    • 1
  • D. A. Stewart
    • 2
  • D. A. Broido
    • 3
    Email author
  • L. Lindsay
    • 4
  • W. Li
    • 1
  1. 1.CEA-GrenobleGrenobleFrance
  2. 2.Cornell Nanoscale FacilityCornell UniversityIthacaUSA
  3. 3.Department of PhysicsBoston CollegeChestnut HillUSA
  4. 4.Naval Research LaboratoryWashington, DCUSA

Personalised recommendations