Advertisement

Phonons in Bulk and Low-Dimensional Systems

  • Zhiping Wang
  • Kitt Reinhardt
  • Mitra Dutta
  • Michael A. StroscioEmail author
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 128)

Abstract

This review highlights selected advances of the last decade in the theory of acoustic and optical phonons in dimensionally confined structures. The basic concepts of the elastic continuum and dielectric continuum models are reviewed. Following this review, specific examples of phonon confinement in dimensionally confined structures are highlighted. These examples include: phonons in single wall carbon nanotubes (CNTs), phonons in multi wall nanotubes, graphene sheets, graphene nanoribbons, graphene quantum dots, graphite confined along the c-axis, and wurtzite structures including quantum wells and quantum dots. The review also covers a number of mechanisms underlying carrier–phonon scattering processes. Finally, this review summarizes the mode amplitudes for a variety of nanostructures.

Notes

Acknowledgements

The authors are grateful to AFOSR for supporting portions of the original research reported in this review. One author (Z. P. Wang) wishes to acknowledge CSC for supporting his visit to the University of Illinois at Chicago.

References

  1. 1.
    Stroscio MA, Dutta M (2001) Phonons in nanostructures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Auld BA (1973) Acoustic fields and waves in solids. Wiley-Interscience, John Wiley & Sons, New YorkGoogle Scholar
  3. 3.
    Fuchs R, Kliewer KL (1965) Optical modes of vibration in an ionic crystal slab. Phys Rev 140:A2076–A2088ADSCrossRefGoogle Scholar
  4. 4.
    Fuchs R, Kliewer KL, Pardee WJ (1966) Optical properties of an ionic crystal slab. Phys Rev 150:589–596ADSCrossRefGoogle Scholar
  5. 5.
    Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: I. J Phys C2:614–629ADSGoogle Scholar
  6. 6.
    Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: II. J Phys C2:630–643Google Scholar
  7. 7.
    Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: III. J Phys C2:1515–1531ADSGoogle Scholar
  8. 8.
    Ruppin R, Engleman R (1970) Optical phonons in small crystals. Rep Prog Phys 33:149–196ADSCrossRefGoogle Scholar
  9. 9.
    Licari JJ, Evrard R (1977) Electron–phonon interaction in a dielectric slab: effect of the electronic polarizability. Phys Rev B15:2254–2264ADSCrossRefGoogle Scholar
  10. 10.
    Wendler L (1985) Electron–phonon interaction in dielectric bilayer systems: effects of the electronic polarizability. Phys Status Solidi (b) 129:513–530ADSCrossRefGoogle Scholar
  11. 11.
    Mori N, Ando T (1989) Electron–optical phonon interaction in single and double heterostructures. Phys Rev B40:6175–6188ADSCrossRefGoogle Scholar
  12. 12.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, OxfordzbMATHGoogle Scholar
  13. 13.
    Loudon R (1964) The Raman effect in crystals. Adv Phys 13:423–482; Erratum, ibid. (1965) 14:621Google Scholar
  14. 14.
    Chen C, Dutta M, Stroscio MA (2004) Electron scattering via interaction with optical phonons in wurtzite crystals. Phys Rev B70:075316ADSCrossRefGoogle Scholar
  15. 15.
    Qian J, Allen MJ, Yang Y, Dutta M, Stroscio MA (2009) Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model. Superlattice Microstruct 46:881–888ADSCrossRefGoogle Scholar
  16. 16.
    Raichura A, Dutta M, Stroscio MA (2004) Continuum model for acoustic phonons in nanotubes: phonon bottleneck. Phys Status Solidi (b) 241:3448–3453ADSCrossRefGoogle Scholar
  17. 17.
    Suzurra H, Ando T (2002) Phonons and electron–phonon scattering in carbon nanotubes. Phys Rev B65:235412ADSCrossRefGoogle Scholar
  18. 18.
    Raichura A, Dutta M, Stroscio MA (2004) Quantized optical vibrational modes of finite-length multi wall nanotubes: optical deformation potential. Superlattices Microstruct 35:147–153ADSCrossRefGoogle Scholar
  19. 19.
    Vogl P (1980) The electron–phonon interaction in semiconductors. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. NATO Advanced Study Institute Series. Plenum, New YorkGoogle Scholar
  20. 20.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58ADSCrossRefGoogle Scholar
  21. 21.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320ADSCrossRefGoogle Scholar
  22. 22.
    Baughman RH (2002) Carbon nanotubes—the route toward applications. Science 297:787–792ADSCrossRefGoogle Scholar
  23. 23.
    Guo J, Goasguen S, Lundstrom M, Datta M (2002) Metal–insulator–semiconductor electrostatics of carbon nanotubes. Appl Phys Lett 81:1486–1488ADSCrossRefGoogle Scholar
  24. 24.
    Xu JM (2001) Highly ordered carbon nanotube arrays and IR detection. Infrared Phys Technol 42:485–491ADSCrossRefGoogle Scholar
  25. 25.
    Kraus H (1967) Thin elastic shells. Wiley, New YorkzbMATHGoogle Scholar
  26. 26.
    Raichura A, Dutta M, Stroscio MA (2003) Quantized acoustic vibrations of single-wall carbon nanotube. J Appl Phys 94:4060–4065ADSCrossRefGoogle Scholar
  27. 27.
    Raichura A, Dutta M, Stroscio MA (2005) Acoustic phonons and phonon bottleneck in single wall nanotubes. J Comput Electron 4:91–95CrossRefGoogle Scholar
  28. 28.
    Constantinou NC, Ridley BK (1990) Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire. Phys Rev B41:10622–10626ADSCrossRefGoogle Scholar
  29. 29.
    Constantinou NC, Ridley BK (1990) Guided and interface LO phonons in cylindrical GaAs/AlxGa1−xAS quantum wires. Phys Rev B41:10627–10631ADSCrossRefGoogle Scholar
  30. 30.
    Stroscio MA, Dutta M, Kahn D, Kim KW (2001) Continuum model of optical phonons in a nanotube. Superlattice Microstruct 29:405–409ADSCrossRefGoogle Scholar
  31. 31.
    Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128–3131ADSCrossRefGoogle Scholar
  32. 32.
    Pennington G, Goldsman N (2003) Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys Rev B68:045426ADSCrossRefGoogle Scholar
  33. 33.
    Stroscio MA, Dutta M, Raichura A (2007) Conductance of nanowires: phonons effects. J Comput Electron 6:247–249CrossRefGoogle Scholar
  34. 34.
    Sun K, Stroscio MA, Dutta M (2009) Thermal conductivity of carbon nanotubes. J Appl Phys 105:074316ADSCrossRefGoogle Scholar
  35. 35.
    Klemens PG (2004) Graphite, graphene and carbon Nanotubes. Thermal conductivity. In Proceeding of the 26th international thermal conductivity conference, DEStech Publications, LancasterGoogle Scholar
  36. 36.
    Nicklow R, Wakabayashi N, Smith HG (1972) Lattice dynamics of pyrolytic graphite. Phys Rev B5:4951–4962ADSCrossRefGoogle Scholar
  37. 37.
    Fan YW, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nature 4:906–911CrossRefGoogle Scholar
  38. 38.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSCrossRefGoogle Scholar
  39. 39.
    Rana F, Geroge PA, Strait JH, Dawlaty J, Shivaraman S, Chandrashekhar M, Spencer MG (2009) Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys Rev B79:115447ADSCrossRefGoogle Scholar
  40. 40.
    Dresselhaus MS, Dresselhaus G, Eklund P (1996) Science of fullerenes and carbon nanotubes. Academic, Salt Lake CityGoogle Scholar
  41. 41.
    Babiker M (1986) Longitudinal polar optical modes in semiconductor quantum wells. J Phys C Solid State Phys 19:683–697ADSCrossRefGoogle Scholar
  42. 42.
    Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejon P (2004) Phonon dispersion in graphite. Phys Rev Lett 2004:075501ADSCrossRefGoogle Scholar
  43. 43.
    Wirtz L, Rubio A (2004) The phonon dispersion of graphite revisited. Solid State Commun 131:141–152ADSCrossRefGoogle Scholar
  44. 44.
    Akturk A, Pennington G, Goldsman N, Wickenden A (2007) Electron transport and velocity oscillations in a carbon nanotube. IEEE Trans Nanotechnol 6:469–474ADSCrossRefGoogle Scholar
  45. 45.
    Sun K, Stroscio MA, Dutta M (2009) Graphite C-axis thermal conductivity. Superlattice Microstruct 45:60–64ADSCrossRefGoogle Scholar
  46. 46.
    Chen C, Dutta M, Stroscio MA (2004) Confined and interface phonon modes in GaN/ZnO heterostructures. J Appl Phys 95:2540–2546ADSCrossRefGoogle Scholar
  47. 47.
    Hellwege KH, Madelung O, Hellege AM (1987) Landolt–Bornstein-numerical data and functional relationships in science and technology. Springer, New YorkGoogle Scholar
  48. 48.
    Komirenko SM, Kim KW, Stroscio MA, Dutta M (1999) Dispersion of polar optical phonons in wurtzite heterostructures. Phys Rev B59:5013–5020ADSCrossRefGoogle Scholar
  49. 49.
    Chen C, Dutta M, Stroscio MA (2004) Surface-optical phonon assisted transitions in quantum dots. J Appl Phys 96:2049–2054ADSCrossRefGoogle Scholar
  50. 50.
    Klein MC, Hache F, Ricard D, Flytzanis C (1990) Size dependence of electron–phonon coupling in semiconductor nanospheres: the case of CdSe. Phys Rev B41:11123–11132ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhiping Wang
    • 1
    • 2
  • Kitt Reinhardt
    • 3
  • Mitra Dutta
    • 1
    • 4
  • Michael A. Stroscio
    • 1
    • 4
    • 5
    Email author
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of PhysicsInner Mongolia UniversityHohhotChina
  3. 3.Air Force Research LaboratoryDaytonUSA
  4. 4.Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations